HepatoScan: Ensemble classification learning models for liver cancer disease detection
Tella Sumallika, Raavi Satya Prasad
Abstract
Liver cancer is a dangerous disease that poses significant risks to human health. The complexity of early detection of liver cancer increases due to the unpredictable growth of cancer cells. This paper introduces HepatoScan, an ensemble classification to detect and diagnose liver cancer tumors from liver cancer datasets. The proposed HepatoScan is the integrated approach that classifies the three types of liver cancers: hepatocellular carcinoma, cholangiocarcinoma, and angiosarcoma. In the initial stage, liver cancer starts in the liver, while the second stage spreads from the liver to other parts of the body. Deep learning is an emerging domain that develops advanced learning models to detect and diagnose liver cancers in the early stages. We train the pre-trained model InceptionV3 on liver cancer datasets to identify advanced patterns associated with cancer tumors or cells. For accurate segmentation and classification of liver lesions in computed tomography (CT) scans, the ensemble multi-class classification (EMCC) combines U-Net and mask region-based convolutional network (R-CNN). In this context, researchers use the CT scan images from Kaggle to analyze the liver cancer tumors for experimental analysis. Finally, quantitative results show that the proposed approach obtained an improved disease detection rate with mean squared error (MSE)-11.34 and peak signal-to-noise ratio (PSNR)-10.34, which is high compared with existing models such as fuzzy C-means (FCM) and kernel fuzzy C-means (KFCM). The classification results obtained based on detection rate with accuracy-0.97%, specificity-0.99%, recall-0.99%, and F1S-0.97% are very high compared with other existing models.
Keywords
Angiosarcoma; Cholangiocarcinoma; Deep learning; Ensemble classification; Hepatocellular carcinoma; HepatoScan