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Water quality plays a crucial role in the growth and survival of arowana fish,
with imbalances in key parameters (pH, temperature, turbidity, dissolved
oxygen, and conductivity) leading to increased mortality rates. While
previous studies have introduced various monitoring models using Arduino
IDE and intrinsic approaches, they lack predictive capabilities, leaving
cultivators unable to take proactive measures. To address this gap, this study
develops a predictive model integrating the internet of things (IoT) with a
fuzzy time series (FTS) algorithm. Through rigorous evaluation and
validation, the proposed FTS-multivariate T2 model demonstrated superior
performance, achieving an exceptionally low error rate of 0.01704%,
outperforming decision tree (0.13410%), FTS-multivariate T1 (0.88397%),
and linear regression (20.91791%). These findings confirm that
FTS-multivariate T2 not only accurately predicts water quality but also
significantly reduces the mean absolute percentage error, providing a robust

solution for sustainable arowana aquaculture.
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1. INTRODUCTION

Arowana fish are a type of decoration fish that people usually keep to furnish their houses. People
believe that keeping them may bring prosperity and wealth to the owner. Because of that simple reason,
many fish farmers have started cultivating this type of fish. This fish is also known by the scientific name
Scleropages formosus and dragon fish in Asian countries. However, cultivating arowana fish is not an easy
task for the cultivator. To allow arowana fish to grow optimally, a specific range for each parameter: pH,
temperature, dissolved oxygen, conductivity, and turbidity is required [1]-[3]. If the cultivators fail to keep
these parameters balanced, this may render arowana fish growth and may cause death for the fish [4]. To
mitigate this problem, many cultivators measure the water quality inside the water manually with some
sensors. However, the conditions inside the water are sometimes unpredictable. The cultivators cannot predict
when one or more water quality parameters are below or over the threshold. For that reason, many studies
proposed a monitoring model to detect water quality with internet of things (loT) technology [5]-[7]. This
technology allows cultivators to monitor the water quality within the cultivation area automatically and
remotely. So, the cultivators only need to come whenever the parameters are almost below or over the threshold.

The study from 2020 proposed a model where the model is equipped with an ultrasonic sensor and
Arduino UNO. This model is capable of the condition of the aquarium and reporting the result to many
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devices [8]. This model was then improved in the next study of 2021. The proposed model in that year is
equipped with pH, temperature, and turbidity sensors. The model successfully monitors the aquarium with
minimum effort [9]. The model development did not stop there and still improving. In 2022, the next study
improved the previous model by designing loT-based water quality monitoring (SIMONAIR) [10]. The latest
model was proposed in 2023 where some studies proposed a model with better accuracy. This article [7]
showed that its model has a low error rate of up to 1% compared to the common sensor. There is one more
article [11] with a model connected to the Thingspeak service that has accurate measurements.

Based on the previous paragraph, this study analyzed the previous models and found common
weaknesses. The first problem is about the processing model used by the previous model. The proposed
model from the article used Arduino UNO as the processing board. This board was not equipped with
wireless communication and only worked locally [12]. Thus, the board must be connected to an additional
component to allow communication to the Internet. The second problem is that there is no machine-learning
algorithm to assist the model in predicting future conditions. Previous models were only limited to monitoring
in real-time, but they cannot predict future water quality. Without future predictions, the cultivators cannot
mitigate the future outcomes that might occur in the cultivation areas [13]. With the limitations of previous
models, the cultivator may suffer severe economic loss if arowana's mortality rate increases.

The current research gap that exists within the previous studies is the missing prediction algorithm
to support future prediction based on time-series data. Thus, the cultivators can mitigate what will occur in
the future. For that reason, this study has the purpose of solving the problem in the previous paragraph by
externally implementing a fuzzy timeseries multivariate (FTS-MV) algorithm as the prediction algorithm for
the IoT. This algorithm is suitable for time series-based data and is often implemented in many situations.
For example, an article [14] published in 2020 implemented a fuzzy time series (FTS) for predicting non-
stationary environment data. In different articles [15], this algorithm is also implemented in solar energy
prediction. The last article [16] within the same year 2020 also uses a fuzzy time-series algorithm to predict
the air quality index. These articles prove that the FTS is implementable and capable to predict water quality
in arowana’s cultivation.

2. METHOD

In this section, this study explains how to gather and prepare the required data before designing the
proposed 10T model and equipping it with a fuzzy time-series algorithm. The first step is to gather the
required data from arowana's cultivation. In this case, this study uses a monitoring 10T model equipped with
several sensors like PH-4502C (water acidity sensor), analog total dissolved solid (water conductivity
sensor), DS18B20 (water temperature sensor), dissolved oxgen and turbidity sensors. The schematic in
Figure 1 is the illustration for the data gathering as well as the prediction node.

Figure 1. The schematic for monitoring and prediction model

Figure 1 is the illustration of the model's schematic. There are several components installed in the
model: i) ESP32 processing board equipped with WiFi networking, ii) turbidity sensor, iii) DS18B20
temperature sensor, iv) analog TDS sensor, v) PH-4502C water acidity sensor, and vi) dissolved oxygen
sensor. With that node, this study gathers the data for two days with an interval of five seconds between data
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in a small-sized aquarium with one arowana. Each recorded data has a timestamp in it to show when the data
is recorded. After gathering the data, this study obtained 34,560 rows in a CSV format for easier access
during the training phase. Table 1 contains the sample of gathered data.

Table 1 contains the sample from gathered data over two days. The first column is the timestamp of
each data in UNIX epoch format [17]. Then the next columns followed by pH, temperature, turbidity,
dissolved oxygen, and conductivity. After obtaining the data, this study continues the step to fuzzify the data
to obtain water quality. The water quality output is in regression format [18], [19]. This study configures the
fuzzy logic to produce the output between the 0 to 100 ranges. The contains of membership configurations
for fuzzification process is shown in Table 2.

Table 2 contains the fuzzification table to obtain water quality. There are five features on the table as
the input and one feature as the output. Each feature is divided into three different configurations that act as a
threshold. The pH has three different configurations: acid, neutral and alkaline. The temperature has cold,
warm and hot configurations. The turbidity, dissolved oxygen and conductivity share similar configurations:
low, medium, and high. Meanwhile, the output membership (quality) has different configurations: poor, fair,
and good. After the fuzzification process, the dataset will have an additional column called quality with range
between 0 to 100. The next step is to train the fuzzy time-series multivariate model. This algorithm is similar
to other FTS. However, this algorithm utilizes multiple features to predict instead single feature. Similar to
multivariate linear regression, but for time series dataset.

This study creates two simple Python scripts that imports the PyFTS library to create two FTS
multivariate models [20]. This study names the model with FTS-multivariate T1 and T2 based on the
dataset’s degree of differentials. The first model (FTS-multivariate T1) was trained with the dataset's first
differential degree. In contrast, the second model (FTS-multivariate T2) was trained with the dataset's second
differential degree. Higher differential degrees lead to more stationary and consistent time series patterns.
After that, these models are exported into binary format for server use. Figure 2 illustrates the prediction
mechanism from an loT node to the server and its database.

Table 1. Sample of gathered data

Timestamp pH Temperature  Turbidity  Dissolved oxygen  Conductivity
1736323200.00  5.49176 21.34176 2.74176 6.04176 340.2418
1736323205.00 7.873051 22.89593 6.069674 13.98629 328.2109
1736323210.00  8.35498 30.04688 6.934142 7.452285 371.6803
1736323215.00 5.145914 19.41082 3.020109 0.817705 243.9608
1736495985.00 8.255449 19.80852 5.491624 11.81403 416.3683
1736495990.00 9.418517 24.36847 4.489872 12.21427 298.1736
1736495995.00  5.769331 17.61775 3.455537 10.21275 278.4579

Table 2. Membership functions for quality fuzzification

Category Indicator Configuration 1 Configuration 2 Configuration 3
Input pH 0-6.9 (Acid) 6.8-7.2 (Neutral) 7.1-14 (Alkaline)
Temperature 0-25 (Cold) 24-35 (Warm) 34-100 (Hot)
Turbidity 0-20 (Low) 15-60 (Medium) 55-1000 (High)
Dissolved oxygen  0-4 (Low) 3-9 (Medium) 8-15 (High)
Conductivity 0-120 (Low) 100-2020 (Medium) ~ 2000-5000 (High)
Output  Quality 0-35 (Poor) 32-75 (Fair) 72-100 (Good)

Figure 2 explains the prediction mechanism from the proposed model, starting from an IoT node
sending five parameters to the server through the ReST protocol [21], [22]. When the server receives the
data, then the server does the prediction with the previously exported FTS model. The server then stores the
prediction result in a database.

Send Data Receive and Predict Store

loT Node Server B

Figure 2. Prediction process from a 10T node to the server
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To evaluate the proposed model, this study compares the result with another algorithm like
multi-variate linear regression and decision tree. This study utilizes a statistical approach by calculating mean
absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root mean
squared error, R-squared (R2), and adjusted R2. MAE shows the average size of the errors between actual and
predicted values. MAPE shows the average error as a percentage, which helps compare the results. MSE
finds the average of the squared errors, giving more weight to significant errors. Root mean squared error
(RMSE) gives a result in the same units as the data. R-squared (R2) tells how much of the variation in the
data. Adjusted R2 fixes this by lowering the score. This approach is more suitable than the confusion matrix
to measure the error rate [23], [24]. In (1)-(6) for each evaluation is shown as follows:

MAE = — damzwt‘” data | qctual; — prediction;| (1)
MAPE = 1 total data |actual;— predlctwnl| %100 (2)
total data “i=1 actual;
MSE = — damzt"ml data(qctual; — prediction;)? (3)
RMSE = \[ — damZ“’ml data qctual; — prediction;)? 4)
totaldata Pt 2
2 1 Yi=1 (actual;—prediction;)
R* Score =1 ytotaldata g oryql;—actual)? ®)
2 _ (1-R?)(total data—1)
R Adjusted — 1- ( ) (6)

total data—total features—1

Each variable has different meaning, where i refers to row number of datasets. The total data refers
to the row number for each actual and prediction values. The actual and prediction refer to dataset stored
inside the database. Meanwhile, total features refer to the number of features in a dataset. This study uses two
different approaches to validate the result. The first one creates a baseline from the stored data, and the
second one uses cross-validation (5 folds) results. The first approach uses a baseline for comparison with the
proposed models, multi-variate linear regression [25], [26] and decision tree [27]. These algorithms are often
used in many situations, including water quality predictions. Based on articles [28], [29] in 2022, both linear
regression and decision tree were implemented to predict water quality in different studies. These articles are
solid evidence of the application of both algorithms in water quality predictions. Meanwhile, the second
approach uses the validation method to calculate the accuracy and error percentages from the proposed
models trained with different lengths of training and test data.

3. RESULTS AND DISCUSSION

In this section, this study explains the results that are obtained from the evaluation and validation
phases. The first explanation is about the prediction results stored in a database. Then, the second explanation
is about the evaluation results where this study compares with another regression algoritms. The last
explanation is about the validation with fuzzy logic as the baseline to strengthen the evaluation results.
Table 3 contains the sample of the fuzzy logic water quality baseline together with predicted values from two
FTS models, multivariate linear regression, and decision trees.

Table 3 contains the water quality predictions stored in a database. This table has several columns:
The baseline column was obtained from fuzzifying features with fuzzy logic that used Table 2 as the
configuration. The FTS-multivariate T1 was the first FTS multivariate model with one degree of differential.
Meanwhile, the FTS-multivariate T2 was the second model with two degrees of differential. Besides that,
there were two more columns: linear regression (that operated in multivariate) and decision tree. However,
evaluation cannot be done alone with a table. Thus, this study evaluated the results with statistical
approaches. There are six components of evaluation that this study has done to measure the performance of
all models.

Figure 3 explains the evaluation results based on MAE and MAPE evaluations. Specifically,
Figures 3(a) and 3(b) present the detailed results of MAE and MAPE from all algorithms. This evaluation
determined the regression accuracy between the baseline and the prediction result. Thus, lower result is the
target of the evaluation. According to the results, FTS-multivariate T2 has the lowest evaluation results
where MAE was 0.0033 and MAPE was 0.017%. The second place was the decision tree model with MAE
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0.0257 and MAPE 0.1341%. Followed in the third place was FTS-multivariate T1 with MAE 0.1697 and
MAPE 0.8839%. The last place for this evaluation was linear regression with MAE 4.0155 and MAPE
20.9179%. From these results, this study has found the highest regression accuracy model. However, the
evidence was too shallow to decide which model was the best. The next evaluation was a MSE and RMSE.
These evaluations were needed to evaluate the difference between the results with larger error penalties.

Table 3. Sample of water quality prediction results
Baseline  FTS-multivariate T1  FTS-multivariate T2  Linear regression  Decision tree

16.9474 16.95011 16.9474 18.52947 16.94693
16.76119 19.10911 16.76119 18.88292 16.76119
16.95728 16.95999 16.95728 18.73887 16.95743
16.76119 16.76391 16.76119 18.82100 16.76119
17.03074 17.03346 17.03074 18.90648 17.03745
16.95283 20.03482 16.95283 18.96535 16.95256
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Figure 3. Evaluation results from (a) MAE and (b) MAPE

Figure 4 explains the evaluation results from MSE and RMSE aspects. Figure 4 explains the
difference between the prediction and the baseline, with a larger penalty for error. Thus, the lower result also
means that the penalty of error is low as well. Figure 4(a) was the result of the MSE, and Figure 4(b) was the
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result of the RMSE. In Figure 4(a), this study found that FTS-multivariate T2 has the lowest error penalty of
0.0049. The second place was Decision tree with an error penalty of up to 0.0783, followed by
FTS-multivariate T1 with an error penalty of up to 0.4598. The last place was linear regression with an error
penalty up to 70.9747. Figure 4(b) shows the simpler interpretation of Figure 4(a), where the results are
similar to previous explanations.
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Figure 4. Evaluation results from (a) MSE and (b) RMSE

The next evaluation is R? and adjusted R2 Both evaluations are used to evaluate how well the
independent variable explains the variety of the dependent variables. Adjusted R? is more focused on the
number of features to ensure a fair evaluation. Hence, a higher result is recommended. Figure 5 explains the
variance results from each model for R? and adjusted R? evaluations.

According to Figure 5, this study found that all models except linear regression have high variance.
As shown in Figure 5(a), all models except linear regression have near-perfect variance reaching 0.99.
Precisely, 0.99993 for FTS-multivariate T2, 0.99889 for decision tree, and 0.99351 for FTS-multivariate T1.
Meanwhile, the linear regression model failed to determine the variance with result -0.00174. Figure 5(b)
shared a similar result with Figure 5(a) except for linear regression, where its result is still the lowest with -
0.00223. To validate the evaluation results, this study compared the prediction results side-by-side with the
baseline. Figure 6 shows the models' prediction results in comparison with the baseline. Since the prediction
results were too many, this study took 100 sequenced rows as a sample and plotted it into a graph.

Figure 6 shows the prediction comparison results of 100 samples between the baseline and the
model's predictions. According to the timestep sample shown in Figure 6, information at timestep 27 showed
that all models were close to the baseline except the linear regression model. FTS-multivariate T2 has precise
prediction with 29.2362, followed by FTS-multivariate T1 with 29.2389 and decision tree with 30.5335.
Meanwhile, linear regression was far from prediction with result 19.0401. Thus, the result in Figure 6
validated all evaluation results and showed that FTS-multivariate T2 has accurate regression predictions. This
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study used the cross-validation method to evaluate the consistency of prediction accuracy. By applying 5-fold
validation, the average accuracy for FTS-multivariate T2 was 99.98%, with an error percentage of 0.016%. In
contrast, the accuracy for FTS-multivariate T1 was 99.13%, accompanied by an error rate of 0.867%. These

results indicate that the accuracy of FTS multivariate models remains both high and stable, even when
different lengths of datasets are used for training.
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After explaining the evaluation and validation results, this study continues to the discussion part. In
the discussion part, this study explains several points: result interpretations, comparison with past studies,
implications, strength and weakness, and future study. The first discussion is about the results obtained.
According to the evaluation and validation results, the proposed models showed the lowest mean absolute
percentage error compared to other models. The proposed model of FTS-multivariate T2 has the lowest error
of 0.0174%. This result means that the proposed model has high accuracy reaching 99%. This explanation is
proved in the validation phase, where the prediction result is similar to the baseline. The runner-up based on
the lowest error percentage was the decision tree model, followed by FTS-multivariate T1 and linear
regression. There were other aspects like mean squared error, root mean squared error, R?, and Adjusted R2.
The results in these aspects were similar with mean absolute percentage error. The best model was
FTS-multivariate T2, followed by decision tree, FTS-multivariate T1, and linear regression.

The second discussion is about the comparison with the past models. As explained in the
introduction section, the past models could not predict future situations. Thus, the cultivators cannot predict
what will happen in the future. This problem has been solved with the proposed model, where this model
(especially FTS multivariate T2) accurately predicts the water quality. This result has been validated with the
water quality baseline. Thus, the proposed model performed better than past models with the capability to
predict the water quality in the future.

The third discussion is the implication of this study in the theoretical and practical areas. The
proposed model was a piece of evidence for fuzzy-based prediction. Most scholars know that fuzzy logic is
mostly implemented to translate any numeric input from a device or a node into human interpretation.
However, the capability of fuzzy algorithms did not stop there. A team of programmers improved the fuzzy
algorithms and turned it into a regression predicting algorithm. This study has successfully proved this
algorithm's accuracy by implementing it as a water quality prediction. The second implication is toward
practical areas.

This study has validated its proposed models and proved how accurate the prediction was. This
proposed model (FTS-multivariate T2) is implementable in arowana cultivations. It can help cultivators
mitigate future water quality conditions more accurately and reduce the number of dead fish. It will lead to a
better economy for the cultivator by reducing the number of dead fish. For instance, the cultivator is now able
to monitor water quality proactively. This predictive approach leads to a reduced error margin and greater
accuracy.

The fourth discussion is about the strengths and weaknesses of the proposed models. Based on the
evaluation and validation phases, this study found that the proposed model (especially FTS-multivariate T2)
has the highest accuracy compared to another algorithm. Meanwhile, the other algorithm
(FTS-multivariate T1) performed poorly below the decision tree model. There was a reason why
FTS-multivariate T2 performed better than FTS-multivariate T1. The key was in the degree of differentials.
The degree of differential was used to remove trends inside the dataset and make it more stationary.
FTS-multivariate T2 predicted more accurately than FTS-multivariate T1 is caused by leftover trends in the
first degree of differential (the second degree of differential offered a cleaner and more stationary dataset).
Thus, FTS-multivariate T2 can understand the seasonality of the dataset more than FTS-multivariate T1. One
of this algorithm's strengths is its scalability. The FTS-multivariate model (both T1 and T2) demonstrates
considerable flexibility regarding scaling. It can be implemented in a larger aquarium. As long as the
necessary dataset and sensors are available, it can be scaled up for more extensive applications with only
minor adjustments, such as aggregating data from multiple sensors.

However, the detection range depends entirely on the type and quality of the sensors used. However,
both models suffered similar weaknesses. Both models required a time series type of dataset. An image
dataset is an example of a dataset that is difficult to be used with this algorithm. Hence, this algorithm is
unsuitable for that type of data. The second weakness of this proposed model is its limited application. Since
it was curated with arowana's dataset and parameters, it might be unsuitable for another type of fish. Thus,
retraining the model with a proper dataset is recommended. The last discussion is about the future possibility
of this study. The proposed models are still growing. There are many chances to improve the current model
by implementing numerous time series-based algorithms. For example, long short-term memory,
autoregressive integrated moving average, or seasonal autoregressive integrated moving average.

Based on the discussions, this study can conclude that the proposed models are successfully capable
to predict the water quality. The FTS-multivariate T2 model is the best model with the highest accuracy
compared to other algorithms. Followed by decision tree, FTS-multivariate T1 and linear regression. In
summary, this predictive model serves as a sophisticated resource for enhancing water quality management
in arowana aquaculture, facilitating the adoption of more sustainable practices.
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4. CONCLUSION

Water quality is an important aspect that affects arowana’s growth. Failing to balance the five
parameters (pH, temperature, turbidity, dissolved oxygen, and conductivity) may render arowana's growth
and increase the number of dead fish. Many past studies proposed many different models to mitigate this
problem. Some proposed a monitoring model with Arduino IDE, and some used an intrinsic approach to
make the monitoring results easier to read. However, there is a problem with the past models. They were not
equipped with a prediction algorithm to predict what would happen in the future. Thus, the cultivators cannot
mitigate when a situation occurs. To solve this problem, this study designed a prediction model based on the
10T combined with a FTS algorithm. Based on the evaluation and validation, the proposed models (especially
FTS-multivariate T2) achieved a low percentage of error reaching 0.01704%. Followed by decision tree
0.13410, FTS-multivariate T1 with 0.88397 and linear regression 20.91791. These results also aligned with
the baseline in the validation phase. This study concluded that the proposed model (FTS-multivariate T2) is
not only capable of predicting water quality but also offers lower mean absolute percentage error compared
to other algorithms.
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