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The advancement of deep learning in computer vision has result in
substantial progress, particularly in image classification tasks. However,
challenges arise when the model is applied to small and unbalanced datasets,
such as X-ray data in medical applications. This study aims to improve the
classification performance of fracture X-ray images using the EfficientNet
architecture optimized with grey wolf optimization (GWO). EfficientNet
was chosen for its efficiency in handling small datasets, while GWO was
applied to optimize hyperparameters, including learning rate, weight decay,
and dropout to improve model accuracy. Random cropping, rotation,
flipping, color jittering, and random erasing, were used to expand the
diversity of the dataset, and class weighting is applied to overcome class
imbalance. The evaluation uses accuracy, precision, recall, and F1-score

metrics. The combination of EfficientNetBO and GWO resulted in an
average 4.5% improvement in model performance over baseline methods.
This approach provides benefits in developing deep learning methods for
medical image classification, especially in dealing with small and
imbalanced datasets.
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1. INTRODUCTION

Technological developments in the current digital era have encouraged rapid innovation in various
areas of life, with deep learning in computer vision [1], [2] being one of the most prominent advancements.
This technology focuses on image data processing [3]. It utilizes mathematical principles such as statistics,
linear algebra, calculus, and optimization [4], to build and train algorithms that allow computers to recognize
patterns, interpret images [5], and optimize models to obtain accurate results. These capabilities have led to
extraordinary achievements in various computer vision applications [6], including image classification tasks.
In this domain, convolutional neural networks (CNN) have become a mainstay method due to their superior
capacity to extract features from image data automatically, produce high accuracy, and manage data
efficiently [7], [8]. Even though it has been proven effective in analyzing and classifying various types of
images, CNN performance is also influenced by multiple factors, namely, the characteristics of the dataset
used, such as data size and distribution [9], the architectural design of the CNN model applied [10], and the
hyperparameters chosen, such as learning rate [11].

Earlier research has shown the effectiveness of CNNs in image classification tasks, especially when
using large datasets such as CIFAR-100. Stanford Dogs, and montréal institute for learning algorithms-traffic
camera dataset (MIO-TCD). The choice of Xception model architecture in developing the CNN model also
shows high accuracy in image classification. This study also explored hyperparameter optimization methods
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like grid search, random search, Bayesian optimization [12], and asynchronous successive halving algorithm
(ASHA), which are proven to increase accuracy by several percent [13]. Although CNN is effective in image
classification, another challenge arises when the model is applied to small and imbalanced datasets. In real-
world applications such as in the healthcare field, medical image data often has limitations in terms of the
number and uneven distribution of classes, for example, in X-ray data [14]. This imbalance can cause the
CNN model to be more likely to recognize the majority class, which reduces the accuracy of the minority
class and negatively impacts the diagnostic performance. One solution to overcome this is to choose an
efficient model architecture and hyperparameter optimization algorithm that can significantly improve model
performance. The EfficientNet architecture outperforms traditional CNN architectures, particularly in
medical image classification tasks involving small datasets [15]. Conversely, the grey wolf optimization
(GWO) algorithm offers an effective metaheuristic method for optimizing the model's hyperparameters.
GWO is more efficient compared to conventional optimization methods such as random search and grid
search, particularly in enhancing the performance of deep learning models on medical datasets [16].

Various methods have been applied in X-ray image classification. The CNN-based approach was
conducted to classify fracture images with a total of 1,521 images distributed into 12 classes. Visual
geometry group 16-layer network (VGG16) was used for feature extraction, and principal component
analysis (PCA) was used for dimension reduction. This study showed an accuracy of 94% [17]. Meanwhile,
object detection and deep learning ensemble-based methods such as a combination of YOLOv5 and
EfficientNetB3 have also been used in the classification of distal radius fractures with a total of 400 images
composed of 2 classes. This study showed an accuracy of 81% [18]. Differences in method selection, model
architecture, optimization strategies, and dataset characteristics are the main factors that affect the
performance of the medical image classification system.

This study contributes in several aspects. First, this study explores the application of hyperparameter
optimization on a small and imbalanced X-ray dataset, which is different from the CIFAR-100, MIO-TCD,
and Stanford Dogs datasets used in previous studies. Second, this study integrates the EfficientNet
architecture for classification tasks and the GWO metaheuristic optimization algorithm to improve model
performance. This is different from previous studies that used the Xception architecture with its
hyperparameter optimization using classical optimization. With this approach, this study is expected to
provide new insights into the development of deep learning methods for X-ray data processing, especially in
dealing with the challenges of class imbalance and small dataset sizes.

2. METHOD

This research aims to develop an image classification model through an experimental approach. It
combines EfficientNet as a CNN model for X-ray image classification and GWO for hyperparameter
optimization. This approach also involves class augmentation and weighting techniques to deal with small
and unbalanced datasets. All experiments in this approach were implemented using the Python programming
language and the PyTorch framework. The study stages are shown in Figure 1.
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Figure 1. The research stages

2.1. Datasets

In this study, the data used were medical X-ray images of various types of bone fractures. The data
were obtained from the Kaggle platform. From this data, only 660 images were taken, which were divided
into four classes: avulsion fracture, comminuted fracture, fracture dislocation, and greenstick fracture. These
images have various resolutions and are formatted in JPG files. The data is small and unbalanced because the
number of samples for each class is different. There are 147 images in the avulsion fracture class, 178 in the
comminuted fracture class, 188 in the fracture dislocation class, and 147 in the greenstick fracture class.
Figure 2 shows some sample data used, where Figure 2(a) shows an image from the avulsion fracture class,
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Figure 2(b) shows a sample from the comminuted fracture class. Figures 2(c) and 2(d) depict sample images
from the fracture dislocation and greenstick fracture classes.

o

(a) (b)

(d)

Figure 2. Sample datasets for (a) avulsion fracture, (b) comminuted fracture, (c) fracture dislocation, and

(d) greenstick fracture

2.2. Data preprocessing

During this phase, various techniques are applied to address issues in the data. This prepares the

data for use, allowing the model to perform better and deliver optimal results. The techniques used in this
phase are:

2.3.

Resize data: bone fracture X-ray image data has various dimensions. Resizing is needed so that the
input image has uniform and consistent dimensions so that the CNN architecture can process data more
efficiently [19]. This procedure also reduces computational demands and increases model training
speed. This study standardized all data with dimensions of 224 pixels (width) and 224 pixels (height).
This measure was chosen because it is commonly used in the EfficientNet architecture model [20].

Data split: in the data pre-processing stage, the data will be divided into three categories: training,
validation, and test data. There are 2 data sharing scenarios in this approach. In the first scenario, of all
the data, 80% of the data is allocated to the training set used to train the model, 10% of the data is
allocated to the validation set used to monitor the development of the model, and the remaining 10% is
used to test the performance of the model that has been trained on images that have not been used. The
second scenario is also the same, with comparisons of 70%, 15%, and 15%, respectively.

Data augmentation: various augmentation techniques were used to make the training data more varied.
Because it uses PyTorch, the augmentation is done via transform. The transformation starts with
ToPILImage to convert the data to an image format, followed by RandomResizedCrop, which randomly
crops the image to 224x224 to add scale and area focus variations. Next, Colorlitter modifies
brightness, contrast, saturation, and hue to make the model more resilient to lighting variations. Random
rotation is applied using RandomRotation, while RandomHorizontalFlip and RandomVerticalFlip add
variations in image orientation. The RandomAffine transformation introduces geometric distortion by
random rotation, scaling, and shear. The data is then converted into a tensor using ToTensor, and
RandomErasing is added to remove a small portion of the image randomly, which functions as
regularization to prevent overfitting. Finally, normalization is carried out by using the mean and
standard deviation of the ImageNet dataset. Normalization can remove bias from pixel values that are
too large or too small, allowing the model to adapt more quickly to existing data patterns [21].

Class weighting: this study uses class weighting to handle class imbalance in the dataset. This approach
gives greater weight to classes with fewer images, thereby strengthening the contribution of minority
classes in the model training process. The weight of each class can be calculated using (1).

Wi = - 1)

cng

where wy is the weight for each class, n is the number of all images in the training set, c is the number
of classes, and n,, is the number of images for each class.

Building models
In this study, the model used is EfficientNetBO. The EfficientNetB0 is a CNN model proposed by

Tan and Le [22]. The model is designed with efficiency as a core principle, maximizing accuracy using fewer
parameters and less computing power. The model uses a method known as compound scaling, which
optimally adjusts the network’s depth, width, and resolution simultaneously. This allows the model to
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provide high accuracy on image recognition tasks while utilizing computational resources more effectively
than traditional CNN models. In the base model, adjustments are made only to the classification layer,
namely changing the number of classes according to the data currently used and adding dropouts with the
desired values to prevent overfitting during the training process. This model uses the EfficientNetBO
architecture, which has been pre-trained using weights from the ImageNet1K dataset to utilize the initial
features learned.

2.4. Grey wolf optimization

GWO is a metaheuristic algorithm that mimics the social behavior and hunting mechanisms of grey
wolves in the wild [23]. This algorithm uses a leadership hierarchy consisting of alpha (paramount leader),
beta (supporter), delta (helper), and omega (follower) to direct the search for optimal solutions [24]. GWO
works by simulating three main stages in hunting, namely tracking, encirclement, and attack on prey, which
are adapted to explore and exploit the solution space.

The social structure of grey wolves involves taking care of injured and weaker members, with
omega wolves being the lowest-ranking individuals who follow the commands of the others. The hunting
success of wolves is largely dependent on this social hierarchy. The social behavior of grey wolves can be
mathematically modeled by considering the prey's location as the optimal solution, while the wolf's position
in the search space represents a potential solution. Alpha wolves are considered the best solution as they are
closest to the prey, with beta and delta wolves representing the next best solutions based on their social rank.
In the search space, omega wolves adjust their position according to the positions of the alpha, beta, and delta
wolves. The positions of the alpha, beta, delta, and omega wolves are denoted as X,, Xz, X5, X,,,, respectively.
The main steps of GWO include prey encircling, hunting, attacking, and searching. Prey encircling is the
process where wolves surround the prey during hunting, which is mathematically expressed through a set of
equations.

The process of prey encirclement is the next stage after the prey is tracked. This process is
mathematically [25] represented by (2) to (5):

D =|C-X,) - X(0)| @
X(t+1)=X,t) - AD ®3)
C=2-d-rand, —d 4)
A=2rand, ©)

where X(t), X, (t), is the current position vector of the grey wolf and prey. The coefficients 4 and C are
adaptive parameter vectors. The rand; dan rand, vectors are vectors with random values in the range [0,1].
Meanwhile, d is a vector whose value decreases gradually from 2 to 0 during iteration.

The alpha wolf, with the help of beta and delta wolves, guides the prey-hunting process. It is
presumed that these three wolves have the best knowledge about the location of the prey, so they become the
best search agents that help update the position of other wolves, mathematically [26] shown in (6) to (12).

Dy =|C X, —X (6)

Dy = |C; - X5 — X| W
D5 =|C;- X5 — X| )
X, =X, — A, "D, )
X, =Xg— A, Dy (10)
X3 =Xs— A3 Dy (11)
X(e+1) = etk (12)

3
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The attack phase on the prey is governed by the parameter @, which regulates exploitation. When the

prey halts, the moving wolf attacks the prey. The value A is a random value within the range [—2r,2r],
where r is a random value between [—1,1]. The new search position is random between the wolf’s current
and the prey’s positions. The attack condition is adequate if |/T | <1

The search or exploration process for an optimal solution is modeled based on the search behavior of
wolves, where wolves disperse to search for prey and regroup when prey is found. Wolves disperse for better
prey if |A| > 1, and converge towards the prey when |4| < 1. The random parameter C prevents the
algorithm from getting stuck in local optima and supports exploration. This parameter provides random
values not only in the initial stages of the algorithm but also in the final stages, thereby increasing the
exploration capabilities without bias.

In this study, hyperparameter optimization aims to minimize prediction errors by calculating the
inverse value of the accuracy of the validation data. The model is built using a combination of
hyperparameters learning rate, weight decay, and dropout rate and then trained using training data. The
objective function in this study can be seen in (13):

min(8) = 1 — accuracy(6) (13)

where @ is the optimized hyperparameter vector, and accuracy can be calculated by (14). The steps for
carrying out GWO optimization are as follows [27]: i) initialize the grey wolf population as well as
controlling parameters such as a, 4, C, and the maximum number of iterations, ii) compute the fitness value
for the initial population using the objective function, iii) set the best wolf as X, second best wolf Xj; and the
third best wolf as X, iv) as long as the number of iterations is still insufficient, v) update all agents’ current
positions and a, 4, C values. Recalculate the fitness values and update the values X,, Xz, X5, Vi) end the loop,
and vii) return the value of X, as the optimal solution.

2.5. Evaluation metrics

The confusion matrix aims to provide an overview of the performance of the classification model by
displaying model predictions compared with the actual labels [28]. It serves as a fundamental tool for
evaluating classification accuracy in machine learning. This matrix contains four elements: true positive
(TP), which indicates when the model accurately predicts the positive class; true negative (TN), which
indicates when the model accurately predicts the negative class; false positive (FP), which occurs when the
model incorrectly predicts the positive class; and false negative (FN), which occurs when the model
incorrectly predicts the negative class.

In evaluating the model, the metrics used are accuracy, precision, recall, and F1-score [29]-[31].
Accuracy refers to the ratio of correct predictions to the total number of predictions. As in (14) can be used to
calculate accuracy. Next is precision, which measures the proportion of correct optimistic predictions out of
all optimistic predictions. This metric can be calculated with (15). Next is recall or sensitivity, which
calculates the proportion of positive data the model detects. Recall can be determined through calculations in
(16). The last one is the F1-score, the harmonic mean between precision and recall, used to assess overall
model performance, especially on imbalanced datasets. F1-score can be calculated via (17). The following
are the equations for evaluating the model.

TP+TN

Accuracy = TPIFPIFNTIN (14)
Precision = — (15)
TP+FP
Recall = —2— (16)
TP+FN
Flscore — 2xPrecisionXRecall (17)

Precision+Recall

3. RESULTS AND DISCUSSION

In this research, the data was tested in two scenarios: a comparison of 80% training data, 10%
validation, 10% test, and a comparison of 70% training data, 15% validation, and 15% test. Because the data
is unbalanced, after dividing the data with the mentioned comparisons, class weighting is carried out on the
training set. By using (1), the weighting values for each class are obtained, as shown in Table 1.
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Table 1. Weighting for each class
Ratio Awvulsion fracture  Comminuted fracture  Fracture dislocation  Greenstick fracture
80:10:10 1.1186 0.9167 0.8407 1.2110
70:15:15 1.1106 0.9094 0.8370 1.2419

In the first scenario (data comparison 80:10:10), the greenstick fracture class has the highest weight
of 1.2110, which shows that it has fewer samples than the other classes. In contrast, the comminuted fracture
class has the lowest weight of 0.9167, indicating that it is more dominant in the training data distribution.
While the second scenario (data comparison 70:15:15) shows a slight change in the class weight values. The
greenstick fracture class still has the highest weight of 1.2419, while the comminuted fracture class has the
lowest weight of 0.9094. This reflects that despite the data comparison changes, the minority classes maintain
significant weighting to increase the model’s sensitivity to minority data. This class weighting is then applied
to the model’s objective function through weighted cross-entropy loss. Next, both comparison scenarios were
tested on the EfficientNetBO model, where the hyperparameters were determined manually and without
optimization. Table 2 shows the specified hyperparameters.

Table 2. Defined hyperparameters

Hyperparameter Value
Learning rate 1x107*
Weigh decay 1x107*
Dropout rate 5x 107!

The combination of hyperparameters was chosen manually to get an initial picture of model
performance before further optimization. The learning rate is determined to maintain the stability of the
training process, while weight decay and dropout are utilized to reduce the risk of overfitting. Figure 3 is the
confusion matrix that shows the distribution of model predictions on actual labels using the hyperparameters
in Table 2. Figure 3(a) shows the classification results with a dataset split of 80:10:10, while Figure 3(b)
shows the results with a dataset split of 70:15:15.

Confusion Matrix Confusion Matrix
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Figure 3. Confusion matrix of model classification results based on hyperparameter configuration in Table 2
(a) results with data comparison 80:10:10 and (b) results with data comparison 70:15:15

Based on Figure 3, the confusion matrix shows that the model can recognize classes quite well even
though not all predictions are correct. The class that was most correctly predicted, both on the 80:10:10 and
70:15:15 training sets, was the communicated fracture class. An evaluation using precision, recall, and
F1-score metrics, shown in Tables 3 and 4, was carried out to provide a more detailed picture of the model’s
performance in each class for both comparisons.
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The evaluation results show that the model performance before optimization still has room for
improvement. For this reason, hyperparameter optimization was carried out using the GWO algorithm to
improve model performance. The optimized hyperparameters are first defined within a specific range. These
hyperparameters are shown in Table 5.

Table 3. Evaluation metrics in the 80:10:10 ratio

Class Precision Recall F1-score
Avulsion fracture 0.71 0.63 0.67
Comminuted fracture 0.80 0.67 0.73
Fracture dislocation 0.67 0.77 0.71
Greenstick fracture 0.71 1.00 0.83

Table 4. Evaluation metrics in the 70:15:15 ratio

Class Precision Recall F1-score
Avulsion fracture 0.71 0.79 0.75
Comminuted fracture 0.86 0.79 0.82
Fracture dislocation 0.82 0.56 0.67
Greenstick fracture 0.65 1.00 0.79

Table 5. Hyperparameter range

Hyperparameter Value

Learning rate [1x107%,1x107%]
Weigh decay [1x107%,1x 1073
Dropout rate [1x107%,5x 1071

After training the model using the specified hyperparameter range, we obtained improved prediction
accuracy. Figure 4 presents a comparison of model performance before and after optimization: Figure 4(a)
for the 80:10:10 dataset split and Figure 4(b) for the 70:15:15 split. Meanwhile, Table 6 presents the optimal
hyperparameter combinations that contributed to these improvements.

Confusion Matrix Confusion Matrix
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(a) (b)
Figure 4. Comparison of model performance after hyperparameter optimization, with (a) model

performance using an 80:10:10 dataset split after optimization and (b) model performance using a 70:15:15
dataset split after optimization

Table 6. Best parameter combinations

Ratio Learning rate Weight decay Dropout rate
80:10:10 9.5164 x 10~* 1.6429 x 10~* 1.994 x 1071
70:15:15 1.395 x 1073 4758 x 10~* 1.820 x 1071
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The evaluation metrics in Tables 7 and 8 show an increase in model performance after
hyperparameter optimization. Based on Tables 7 and 8, hyperparameter optimization improved model
performance on both data divisions. In the 80:10:10 split, precision, recall, and F1-score each increased
significantly, while in 70:15:15, the increase was minor, but the final result was still higher. Meanwhile,
increasing accuracy can be seen in Figure 5.

Table 7. Rasio 80:10:10

Comparison Precision Recall F1-score
Before optimization 0.73 0.73 0.72
After optimization 0.83 0.80 0.80

Table 8. Rasio 70:15:15
Comparison Precision Recall F1-score
Before optimization 0.79 0.77 0.77
After optimization 0.82 0.79 0.79

0.85

o
o0

0.75

Accuracy

o
N

0.65
80:10:10 70:15:15

Data split ratio

Before optimization M After optimization

Figure 5. Accuracy comparison

In Figure 5, hyperparameter optimization positively impacts model performance in both data sharing
scenarios, namely 80:10:10 and 70:15:15. In the 80:10:10 split, the accuracy increases from about 0.73
before optimization to 0.80 after optimization. This shows that the optimized combination of
hyperparameters can enhance the model's capability to recognize data patterns. In the 70:15:15 split, the
initial accuracy before optimization was 0.77, slightly higher than 80:10:10, and increased to 0.79 after
optimization. Although the increase in 70:15:15 is minor, the final result still shows increased accuracy.
Another experiment was conducted using MobileNet, which produced an accuracy 0.70. This demonstrated
that EfficientNetBO0 yields better result, with higher accuracy.

4. CONCLUSION

This study shows that the combination of EfficientNetBO and GWO improves the model
performance by 4.5% compared to the baseline model, especially on small and imbalanced datasets. The
model can also be applied to larger datasets. Future development plans include: i) replacing the dataset with
computed tomography (CT) scan or magnetic resonance imaging (MRI) images, ii) integrating basic
visualization of classification decisions using gradient-weighted class activation mapping (Grad-CAM) or
others, and iii) developing the model into a web application for automatic diagnosis by radiologists.
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