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 The advancement of deep learning in computer vision has result in 

substantial progress, particularly in image classification tasks. However, 

challenges arise when the model is applied to small and unbalanced datasets, 

such as X-ray data in medical applications. This study aims to improve the 

classification performance of fracture X-ray images using the EfficientNet 

architecture optimized with grey wolf optimization (GWO). EfficientNet 

was chosen for its efficiency in handling small datasets, while GWO was 

applied to optimize hyperparameters, including learning rate, weight decay, 

and dropout to improve model accuracy. Random cropping, rotation, 

flipping, color jittering, and random erasing, were used to expand the 

diversity of the dataset, and class weighting is applied to overcome class 

imbalance. The evaluation uses accuracy, precision, recall, and F1-score 

metrics. The combination of EfficientNetB0 and GWO resulted in an 

average 4.5% improvement in model performance over baseline methods. 

This approach provides benefits in developing deep learning methods for 

medical image classification, especially in dealing with small and 

imbalanced datasets. 
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1. INTRODUCTION 

Technological developments in the current digital era have encouraged rapid innovation in various 

areas of life, with deep learning in computer vision [1], [2] being one of the most prominent advancements. 

This technology focuses on image data processing [3]. It utilizes mathematical principles such as statistics, 

linear algebra, calculus, and optimization [4], to build and train algorithms that allow computers to recognize 

patterns, interpret images [5], and optimize models to obtain accurate results. These capabilities have led to 

extraordinary achievements in various computer vision applications [6], including image classification tasks. 

In this domain, convolutional neural networks (CNN) have become a mainstay method due to their superior 

capacity to extract features from image data automatically, produce high accuracy, and manage data 

efficiently [7], [8]. Even though it has been proven effective in analyzing and classifying various types of 

images, CNN performance is also influenced by multiple factors, namely, the characteristics of the dataset 

used, such as data size and distribution [9], the architectural design of the CNN model applied [10], and the 

hyperparameters chosen, such as learning rate [11]. 

Earlier research has shown the effectiveness of CNNs in image classification tasks, especially when 

using large datasets such as CIFAR-100. Stanford Dogs, and montréal institute for learning algorithms-traffic 

camera dataset (MIO-TCD). The choice of Xception model architecture in developing the CNN model also 

shows high accuracy in image classification. This study also explored hyperparameter optimization methods 
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like grid search, random search, Bayesian optimization [12], and asynchronous successive halving algorithm 

(ASHA), which are proven to increase accuracy by several percent [13]. Although CNN is effective in image 

classification, another challenge arises when the model is applied to small and imbalanced datasets. In real-

world applications such as in the healthcare field, medical image data often has limitations in terms of the 

number and uneven distribution of classes, for example, in X-ray data [14]. This imbalance can cause the 

CNN model to be more likely to recognize the majority class, which reduces the accuracy of the minority 

class and negatively impacts the diagnostic performance. One solution to overcome this is to choose an 

efficient model architecture and hyperparameter optimization algorithm that can significantly improve model 

performance. The EfficientNet architecture outperforms traditional CNN architectures, particularly in 

medical image classification tasks involving small datasets [15]. Conversely, the grey wolf optimization 

(GWO) algorithm offers an effective metaheuristic method for optimizing the model's hyperparameters. 

GWO is more efficient compared to conventional optimization methods such as random search and grid 

search, particularly in enhancing the performance of deep learning models on medical datasets [16]. 

Various methods have been applied in X-ray image classification. The CNN-based approach was 

conducted to classify fracture images with a total of 1,521 images distributed into 12 classes. Visual 

geometry group 16-layer network (VGG16) was used for feature extraction, and principal component 

analysis (PCA) was used for dimension reduction. This study showed an accuracy of 94% [17]. Meanwhile, 

object detection and deep learning ensemble-based methods such as a combination of YOLOv5 and 

EfficientNetB3 have also been used in the classification of distal radius fractures with a total of 400 images 

composed of 2 classes. This study showed an accuracy of 81% [18]. Differences in method selection, model 

architecture, optimization strategies, and dataset characteristics are the main factors that affect the 

performance of the medical image classification system. 

This study contributes in several aspects. First, this study explores the application of hyperparameter 

optimization on a small and imbalanced X-ray dataset, which is different from the CIFAR-100, MIO-TCD, 

and Stanford Dogs datasets used in previous studies. Second, this study integrates the EfficientNet 

architecture for classification tasks and the GWO metaheuristic optimization algorithm to improve model 

performance. This is different from previous studies that used the Xception architecture with its 

hyperparameter optimization using classical optimization. With this approach, this study is expected to 

provide new insights into the development of deep learning methods for X-ray data processing, especially in 

dealing with the challenges of class imbalance and small dataset sizes. 

 

 

2. METHOD 

This research aims to develop an image classification model through an experimental approach. It 

combines EfficientNet as a CNN model for X-ray image classification and GWO for hyperparameter 

optimization. This approach also involves class augmentation and weighting techniques to deal with small 

and unbalanced datasets. All experiments in this approach were implemented using the Python programming 

language and the PyTorch framework. The study stages are shown in Figure 1. 

 

 

 
 

Figure 1. The research stages 

 

 

2.1.  Datasets 

In this study, the data used were medical X-ray images of various types of bone fractures. The data 

were obtained from the Kaggle platform. From this data, only 660 images were taken, which were divided 

into four classes: avulsion fracture, comminuted fracture, fracture dislocation, and greenstick fracture. These 

images have various resolutions and are formatted in JPG files. The data is small and unbalanced because the 

number of samples for each class is different. There are 147 images in the avulsion fracture class, 178 in the 

comminuted fracture class, 188 in the fracture dislocation class, and 147 in the greenstick fracture class. 

Figure 2 shows some sample data used, where Figure 2(a) shows an image from the avulsion fracture class, 
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Figure 2(b) shows a sample from the comminuted fracture class. Figures 2(c) and 2(d) depict sample images 

from the fracture dislocation and greenstick fracture classes. 
 

 

    
(a) (b) (c) (d) 

 

Figure 2. Sample datasets for (a) avulsion fracture, (b) comminuted fracture, (c) fracture dislocation, and  

(d) greenstick fracture 
 

 

2.2.  Data preprocessing 

During this phase, various techniques are applied to address issues in the data. This prepares the  

data for use, allowing the model to perform better and deliver optimal results. The techniques used in this 

phase are: 

− Resize data: bone fracture X-ray image data has various dimensions. Resizing is needed so that the 

input image has uniform and consistent dimensions so that the CNN architecture can process data more 

efficiently [19]. This procedure also reduces computational demands and increases model training 

speed. This study standardized all data with dimensions of 224 pixels (width) and 224 pixels (height). 

This measure was chosen because it is commonly used in the EfficientNet architecture model [20]. 

− Data split: in the data pre-processing stage, the data will be divided into three categories: training, 

validation, and test data. There are 2 data sharing scenarios in this approach. In the first scenario, of all 

the data, 80% of the data is allocated to the training set used to train the model, 10% of the data is 

allocated to the validation set used to monitor the development of the model, and the remaining 10% is 

used to test the performance of the model that has been trained on images that have not been used. The 

second scenario is also the same, with comparisons of 70%, 15%, and 15%, respectively. 

− Data augmentation: various augmentation techniques were used to make the training data more varied. 

Because it uses PyTorch, the augmentation is done via transform. The transformation starts with 

ToPILImage to convert the data to an image format, followed by RandomResizedCrop, which randomly 

crops the image to 224×224 to add scale and area focus variations. Next, ColorJitter modifies 

brightness, contrast, saturation, and hue to make the model more resilient to lighting variations. Random 

rotation is applied using RandomRotation, while RandomHorizontalFlip and RandomVerticalFlip add 

variations in image orientation. The RandomAffine transformation introduces geometric distortion by 

random rotation, scaling, and shear. The data is then converted into a tensor using ToTensor, and 

RandomErasing is added to remove a small portion of the image randomly, which functions as 

regularization to prevent overfitting. Finally, normalization is carried out by using the mean and 

standard deviation of the ImageNet dataset. Normalization can remove bias from pixel values that are 

too large or too small, allowing the model to adapt more quickly to existing data patterns [21]. 

− Class weighting: this study uses class weighting to handle class imbalance in the dataset. This approach 

gives greater weight to classes with fewer images, thereby strengthening the contribution of minority 

classes in the model training process. The weight of each class can be calculated using (1). 

 

𝑤𝑘 =
𝑛

𝑐∙𝑛𝑘
 (1) 

 

where 𝑤𝑘 is the weight for each class, 𝑛 is the number of all images in the training set, 𝑐 is the number 

of classes, and 𝑛𝑘 is the number of images for each class. 

 

2.3.  Building models 

In this study, the model used is EfficientNetB0. The EfficientNetB0 is a CNN model proposed by 

Tan and Le [22]. The model is designed with efficiency as a core principle, maximizing accuracy using fewer 

parameters and less computing power. The model uses a method known as compound scaling, which 

optimally adjusts the network’s depth, width, and resolution simultaneously. This allows the model to 
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provide high accuracy on image recognition tasks while utilizing computational resources more effectively 

than traditional CNN models. In the base model, adjustments are made only to the classification layer, 

namely changing the number of classes according to the data currently used and adding dropouts with the 

desired values to prevent overfitting during the training process. This model uses the EfficientNetB0 

architecture, which has been pre-trained using weights from the ImageNet1K dataset to utilize the initial 

features learned. 

 

2.4.  Grey wolf optimization 

GWO is a metaheuristic algorithm that mimics the social behavior and hunting mechanisms of grey 

wolves in the wild [23]. This algorithm uses a leadership hierarchy consisting of alpha (paramount leader), 

beta (supporter), delta (helper), and omega (follower) to direct the search for optimal solutions [24]. GWO 

works by simulating three main stages in hunting, namely tracking, encirclement, and attack on prey, which 

are adapted to explore and exploit the solution space. 

The social structure of grey wolves involves taking care of injured and weaker members, with 

omega wolves being the lowest-ranking individuals who follow the commands of the others. The hunting 

success of wolves is largely dependent on this social hierarchy. The social behavior of grey wolves can be 

mathematically modeled by considering the prey's location as the optimal solution, while the wolf's position 

in the search space represents a potential solution. Alpha wolves are considered the best solution as they are 

closest to the prey, with beta and delta wolves representing the next best solutions based on their social rank. 

In the search space, omega wolves adjust their position according to the positions of the alpha, beta, and delta 

wolves. The positions of the alpha, beta, delta, and omega wolves are denoted as 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿 , 𝑋𝜔, respectively. 

The main steps of GWO include prey encircling, hunting, attacking, and searching. Prey encircling is the 

process where wolves surround the prey during hunting, which is mathematically expressed through a set of 

equations. 

The process of prey encirclement is the next stage after the prey is tracked. This process is 

mathematically [25] represented by (2) to (5): 

 

𝐷⃗⃗ = |𝐶 ∙ 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝑋 (𝑡)| (2) 

 

𝑋 (𝑡 + 1) = 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡) − 𝐴 𝐷⃗⃗  (3) 

 

𝐶 = 2 ∙ 𝑎 ∙ 𝑟𝑎𝑛𝑑1
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑎  (4) 

 

𝐴 = 2 ∙ 𝑟𝑎𝑛𝑑2
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   (5) 

 

where 𝑋 (𝑡), 𝑋𝑝
⃗⃗ ⃗⃗  (𝑡), is the current position vector of the grey wolf and prey. The coefficients 𝐴  and 𝐶  are 

adaptive parameter vectors. The 𝑟𝑎𝑛𝑑1 dan 𝑟𝑎𝑛𝑑2 vectors are vectors with random values in the range [0,1]. 
Meanwhile, 𝑎  is a vector whose value decreases gradually from 2 to 0 during iteration. 

The alpha wolf, with the help of beta and delta wolves, guides the prey-hunting process. It is 

presumed that these three wolves have the best knowledge about the location of the prey, so they become the 

best search agents that help update the position of other wolves, mathematically [26] shown in (6) to (12). 

 

𝐷𝛼
⃗⃗⃗⃗  ⃗ = |𝐶1

⃗⃗⃗⃗ ∙ 𝑋𝛼 
⃗⃗ ⃗⃗  ⃗ − 𝑋 | (6) 

 

𝐷𝛽
⃗⃗ ⃗⃗  = |𝐶2

⃗⃗⃗⃗ ∙ 𝑋𝛽 
⃗⃗ ⃗⃗  ⃗ − 𝑋 | (7) 

 

𝐷𝛿
⃗⃗ ⃗⃗  = |𝐶3

⃗⃗⃗⃗ ∙ 𝑋𝛿 
⃗⃗ ⃗⃗  ⃗ − 𝑋 | (8) 

 

𝑋1
⃗⃗⃗⃗ = 𝑋𝛼

⃗⃗ ⃗⃗  − 𝐴 1 ∙ 𝐷𝛼
⃗⃗⃗⃗  ⃗ (9) 

 

𝑋2
⃗⃗⃗⃗ = 𝑋𝛽

⃗⃗ ⃗⃗  − 𝐴 2 ∙ 𝐷𝛽
⃗⃗ ⃗⃗   (10) 

 

𝑋3
⃗⃗⃗⃗ = 𝑋𝛿

⃗⃗ ⃗⃗  − 𝐴 3 ∙ 𝐷𝛿
⃗⃗ ⃗⃗   (11) 

 

𝑋 (𝑡 + 1) =
𝑋1⃗⃗⃗⃗  ⃗+𝑋2⃗⃗⃗⃗  ⃗+𝑋3⃗⃗⃗⃗  ⃗

3
 (12) 
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The attack phase on the prey is governed by the parameter 𝑎 , which regulates exploitation. When the 

prey halts, the moving wolf attacks the prey. The value 𝐴  is a random value within the range [−2𝑟, 2𝑟], 
where 𝑟 is a random value between [−1,1]. The new search position is random between the wolf’s current 

and the prey’s positions. The attack condition is adequate if |𝐴 | < 1. 

The search or exploration process for an optimal solution is modeled based on the search behavior of 

wolves, where wolves disperse to search for prey and regroup when prey is found. Wolves disperse for better 

prey if |𝐴 | > 1, and converge towards the prey when |𝐴 | < 1. The random parameter 𝐶  prevents the 

algorithm from getting stuck in local optima and supports exploration. This parameter provides random 

values not only in the initial stages of the algorithm but also in the final stages, thereby increasing the 

exploration capabilities without bias. 

In this study, hyperparameter optimization aims to minimize prediction errors by calculating the 

inverse value of the accuracy of the validation data. The model is built using a combination of 

hyperparameters learning rate, weight decay, and dropout rate and then trained using training data. The 

objective function in this study can be seen in (13): 

 

min(𝜃) = 1 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝜃) (13) 

 

where 𝜃 is the optimized hyperparameter vector, and accuracy can be calculated by (14). The steps for 

carrying out GWO optimization are as follows [27]: i) initialize the grey wolf population as well as 

controlling parameters such as 𝑎, 𝐴, 𝐶, and the maximum number of iterations, ii) compute the fitness value 

for the initial population using the objective function, iii) set the best wolf as 𝑋𝛼, second best wolf 𝑋𝛽 and the 

third best wolf as 𝑋𝛿 , iv) as long as the number of iterations is still insufficient, v) update all agents’ current 

positions and 𝑎, 𝐴, 𝐶 values. Recalculate the fitness values and update the values 𝑋𝛼 , 𝑋𝛽 , 𝑋𝛿, vi) end the loop, 

and vii) return the value of 𝑋𝛼 as the optimal solution. 

 

2.5.  Evaluation metrics 

The confusion matrix aims to provide an overview of the performance of the classification model by 

displaying model predictions compared with the actual labels [28]. It serves as a fundamental tool for 

evaluating classification accuracy in machine learning. This matrix contains four elements: true positive 

(TP), which indicates when the model accurately predicts the positive class; true negative (TN), which 

indicates when the model accurately predicts the negative class; false positive (FP), which occurs when the 

model incorrectly predicts the positive class; and false negative (FN), which occurs when the model 

incorrectly predicts the negative class. 

In evaluating the model, the metrics used are accuracy, precision, recall, and F1-score [29]–[31]. 

Accuracy refers to the ratio of correct predictions to the total number of predictions. As in (14) can be used to 

calculate accuracy. Next is precision, which measures the proportion of correct optimistic predictions out of 

all optimistic predictions. This metric can be calculated with (15). Next is recall or sensitivity, which 

calculates the proportion of positive data the model detects. Recall can be determined through calculations in 

(16). The last one is the F1-score, the harmonic mean between precision and recall, used to assess overall 

model performance, especially on imbalanced datasets. F1-score can be calculated via (17). The following 

are the equations for evaluating the model. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (14) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (15) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (16) 

 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (17) 

 

 

3. RESULTS AND DISCUSSION 

In this research, the data was tested in two scenarios: a comparison of 80% training data, 10% 

validation, 10% test, and a comparison of 70% training data, 15% validation, and 15% test. Because the data 

is unbalanced, after dividing the data with the mentioned comparisons, class weighting is carried out on the 

training set. By using (1), the weighting values for each class are obtained, as shown in Table 1. 
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Table 1. Weighting for each class 
Ratio Avulsion fracture Comminuted fracture Fracture dislocation Greenstick fracture 

80:10:10 1.1186 0.9167 0.8407 1.2110 
70:15:15 1.1106 0.9094 0.8370 1.2419 

 

 

In the first scenario (data comparison 80:10:10), the greenstick fracture class has the highest weight 

of 1.2110, which shows that it has fewer samples than the other classes. In contrast, the comminuted fracture 

class has the lowest weight of 0.9167, indicating that it is more dominant in the training data distribution. 

While the second scenario (data comparison 70:15:15) shows a slight change in the class weight values. The 

greenstick fracture class still has the highest weight of 1.2419, while the comminuted fracture class has the 

lowest weight of 0.9094. This reflects that despite the data comparison changes, the minority classes maintain 

significant weighting to increase the model’s sensitivity to minority data. This class weighting is then applied 

to the model’s objective function through weighted cross-entropy loss. Next, both comparison scenarios were 

tested on the EfficientNetB0 model, where the hyperparameters were determined manually and without 

optimization. Table 2 shows the specified hyperparameters. 

 

 

Table 2. Defined hyperparameters 
Hyperparameter Value 

Learning rate 1 × 10−4 

Weigh decay 1 × 10−4 

Dropout rate 5 × 10−1 

 

 

The combination of hyperparameters was chosen manually to get an initial picture of model 

performance before further optimization. The learning rate is determined to maintain the stability of the 

training process, while weight decay and dropout are utilized to reduce the risk of overfitting. Figure 3 is the 

confusion matrix that shows the distribution of model predictions on actual labels using the hyperparameters 

in Table 2. Figure 3(a) shows the classification results with a dataset split of 80:10:10, while Figure 3(b) 

shows the results with a dataset split of 70:15:15. 

 

 

  
(a) (b) 

 

Figure 3. Confusion matrix of model classification results based on hyperparameter configuration in Table 2 

(a) results with data comparison 80:10:10 and (b) results with data comparison 70:15:15 

 

 

Based on Figure 3, the confusion matrix shows that the model can recognize classes quite well even 

though not all predictions are correct. The class that was most correctly predicted, both on the 80:10:10 and 

70:15:15 training sets, was the communicated fracture class. An evaluation using precision, recall, and  

F1-score metrics, shown in Tables 3 and 4, was carried out to provide a more detailed picture of the model’s 

performance in each class for both comparisons. 
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The evaluation results show that the model performance before optimization still has room for 

improvement. For this reason, hyperparameter optimization was carried out using the GWO algorithm to 

improve model performance. The optimized hyperparameters are first defined within a specific range. These 

hyperparameters are shown in Table 5. 

 
 

Table 3. Evaluation metrics in the 80:10:10 ratio 
Class Precision Recall F1-score 

Avulsion fracture 0.71 0.63 0.67 

Comminuted fracture 0.80 0.67 0.73 
Fracture dislocation 0.67 0.77 0.71 

Greenstick fracture 0.71 1.00 0.83 

 

 

Table 4. Evaluation metrics in the 70:15:15 ratio 
Class Precision Recall F1-score 

Avulsion fracture 0.71 0.79 0.75 

Comminuted fracture 0.86 0.79 0.82 
Fracture dislocation 0.82 0.56 0.67 

Greenstick fracture 0.65 1.00 0.79 

 
 

Table 5. Hyperparameter range 
Hyperparameter Value 

Learning rate [1 × 10−5, 1 × 10−2] 
Weigh decay [1 × 10−6, 1 × 10−3] 
Dropout rate [1 × 10−1, 5 × 10−1] 

 

 

After training the model using the specified hyperparameter range, we obtained improved prediction 

accuracy. Figure 4 presents a comparison of model performance before and after optimization: Figure 4(a) 

for the 80:10:10 dataset split and Figure 4(b) for the 70:15:15 split. Meanwhile, Table 6 presents the optimal 

hyperparameter combinations that contributed to these improvements. 

 

 

  
(a) (b) 

 

Figure 4. Comparison of model performance after hyperparameter optimization, with (a) model 

performance using an 80:10:10 dataset split after optimization and (b) model performance using a 70:15:15 

dataset split after optimization 

 

 

Table 6. Best parameter combinations 
Ratio Learning rate Weight decay Dropout rate 

80:10:10 9.5164 × 10−4 1.6429 × 10−4 1.994 × 10−1 

70:15:15 1.395 × 10−3 4.758 × 10−4 1.820 × 10−1 
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The evaluation metrics in Tables 7 and 8 show an increase in model performance after 

hyperparameter optimization. Based on Tables 7 and 8, hyperparameter optimization improved model 

performance on both data divisions. In the 80:10:10 split, precision, recall, and F1-score each increased 

significantly, while in 70:15:15, the increase was minor, but the final result was still higher. Meanwhile, 

increasing accuracy can be seen in Figure 5. 
 

 

Table 7. Rasio 80:10:10 
Comparison Precision Recall F1-score 

Before optimization 0.73 0.73 0.72 

After optimization 0.83 0.80 0.80 

 

 

Table 8. Rasio 70:15:15 
Comparison Precision Recall F1-score 

Before optimization 0.79 0.77 0.77 

After optimization 0.82 0.79 0.79 

 

 

 
 

Figure 5. Accuracy comparison 
 

 

In Figure 5, hyperparameter optimization positively impacts model performance in both data sharing 

scenarios, namely 80:10:10 and 70:15:15. In the 80:10:10 split, the accuracy increases from about 0.73 

before optimization to 0.80 after optimization. This shows that the optimized combination of 

hyperparameters can enhance the model's capability to recognize data patterns. In the 70:15:15 split, the 

initial accuracy before optimization was 0.77, slightly higher than 80:10:10, and increased to 0.79 after 

optimization. Although the increase in 70:15:15 is minor, the final result still shows increased accuracy. 

Another experiment was conducted using MobileNet, which produced an accuracy 0.70. This demonstrated 

that EfficientNetB0 yields better result, with higher accuracy. 

 

 

4. CONCLUSION 

This study shows that the combination of EfficientNetB0 and GWO improves the model 

performance by 4.5% compared to the baseline model, especially on small and imbalanced datasets. The 

model can also be applied to larger datasets. Future development plans include: i) replacing the dataset with 

computed tomography (CT) scan or magnetic resonance imaging (MRI) images, ii) integrating basic 

visualization of classification decisions using gradient-weighted class activation mapping (Grad-CAM) or 

others, and iii) developing the model into a web application for automatic diagnosis by radiologists. 

 

 

FUNDING INFORMATION 

The authors declare that no funding was received for this research. 

 

 

AUTHOR CONTRIBUTIONS STATEMENT 

Author roles and contributions are presented in the following table, in accordance with the 

Contributor Roles Taxonomy (CRediT) guidelines. 

0.65

0.7

0.75

0.8

0.85

80:10:10 70:15:15

A
cc

u
ra

cy

Data split ratio

Before optimization After optimization



                ISSN: 2722-3221 

Comput Sci Inf Technol, Vol. 6, No. 2, July 2025: 112-121 

120 

Name of Author C M So Va Fo I R D O E Vi Su P Fu 

Khusnul Khotimah ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓  ✓  ✓ ✓ 

Sugiyarto Surono  ✓  ✓ ✓    ✓ ✓  ✓ ✓  

Aris Thobirin     ✓ ✓    ✓ ✓  ✓ ✓  

 

C :  Conceptualization 

M :  Methodology 

So :  Software 

Va :  Validation 

Fo :  Formal analysis 

I :  Investigation 

R :  Resources 

D : Data Curation 

O : Writing - Original Draft 

E : Writing - Review & Editing 

Vi :  Visualization 

Su :  Supervision 

P :  Project administration 

Fu :  Funding acquisition 

 

 

 

CONFLICT OF INTEREST STATEMENT 

Authors state no conflict of interest. 

 

 

DATA AVAILABILITY 

The data is available on Kaggle https://www.kaggle.com/datasets/pkdarabi/bone-break-

classification-image-dataset/data. 

 

 

REFERENCES 
[1] S. Liu, W. Wang, L. Deng, and H. Xu, “Cnn-trans model: a parallel dual-branch network for fundus image classification,” 

Biomedical Signal Processing and Control, vol. 96, Oct. 2024, doi: 10.1016/j.bspc.2024.106621. 

[2] K. W. Goh et al., “Comparison of activation functions in convolutional neural network for poisson noisy image classification,” 

Emerging Science Journal, vol. 8, no. 2, pp. 592–602, Apr. 2024, doi: 10.28991/ESJ-2024-08-02-014. 
[3] K. Man and J. Chahl, “A review of synthetic image data and its use in computer vision,” Journal of Imaging, vol. 8, no. 11,  

Nov. 2022, doi: 10.3390/jimaging8110310. 

[4] E. T. A. Albert, N. H. Bille, and N. M. E. Leonard, “A mathematical primer to classical deep learning,” Journal of Applied and 
Advanced Research, vol. 9, pp. 15–25, Sep. 2024, doi: 10.21839/jaar.2024.v9.9169. 

[5] A. Kaur and M. Kapoor, “An approach to recognize efficient deep learning model for pattern recognition,” in 2024 11th 

International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO),  
Mar. 2024, pp. 1–6, doi: 10.1109/ICRITO61523.2024.10522108. 

[6] A. Lopes, F. P. dos Santos, D. de Oliveira, M. Schiezaro, and H. Pedrini, “Computer vision model compression techniques for 

embedded systems: a survey,” Computers & Graphics, vol. 123, Oct. 2024, doi: 10.1016/j.cag.2024.104015. 
[7] U. Samariya and R. K. Sonker, “Comparisons of image classification using LBP with CNN and ANN,” Journal of Applied 

Mathematics and Computation, vol. 6, no. 3, pp. 343–346, Sep. 2022, doi: 10.26855/jamc.2022.09.006. 

[8] S. Surono, M. Rivaldi, and N. Irsalinda, “Classification using u-net CN on multi-resolution CT scan image,” Fuzzy Systems and 
Data Mining X, A.J. Tallón-Ballesteros (Ed.), 2024, doi: 10.3233/FAIA241412. 

[9] A. Meliboev, J. Alikhanov, and W. Kim, “Performance evaluation of deep learning based network intrusion detection system 

across multiple balanced and imbalanced datasets,” Electronics, vol. 11, no. 4, Feb. 2022, doi: 10.3390/electronics11040515. 
[10] F. A. Breve, “COVID-19 detection on chest X-ray images: a comparison of CNN architectures and ensembles,” Expert Systems 

with Applications, vol. 204, Oct. 2022, doi: 10.1016/j.eswa.2022.117549. 

[11] A. Sharma and D. Kumar, “Hyperparameter optimization in CNN: a review,” in 2023 International Conference on Computing, 
Communication, and Intelligent Systems (ICCCIS), Nov. 2023, pp. 237–242, doi: 10.1109/ICCCIS60361.2023.10425571. 

[12] S. Surono, M. Y. F. Afitian, A. Setyawan, D. K. Eni Arofah, and A. Thobirin, “Comparison of CNN classification model using 
machine learning with bayesian optimizer,” HighTech and Innovation Journal, vol. 4, no. 3, pp. 531–542, Sep. 2023,  

doi: 10.28991/HIJ-2023-04-03-05. 

[13] M. Wojciuk, Z. Swiderska-Chadaj, K. Siwek, and A. Gertych, “Improving classification accuracy of fine-tuned CNN models: 

impact of hyperparameter optimization,” Heliyon, vol. 10, no. 5, Mar. 2024, doi: 10.1016/j.heliyon.2024.e26586. 

[14] C. J. Hellín, A. A. Olmedo, A. Valledor, J. Gómez, M. López-Benítez, and A. Tayebi, “Unraveling the impact of class imbalance on 

deep-learning models for medical image classification,” Applied Sciences, vol. 14, no. 8, Apr. 2024, doi: 10.3390/app14083419. 
[15] P. Jeevan and A. Sethi, “Which backbone to use: a resource-efficient domain specific comparison for computer vision,”arXiv-

Computer Science, pp. 1–14, Jun. 2024, doi: 10.48550/arXiv.2406.05612. 

[16] Y. C. Kuyu and N. Ozekmekci, “Grey wolf optimizer to the hyperparameters optimization of convolutional neural network with 
several activation functions,” in 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies 

(ISMSIT), Oct. 2022, pp. 13–17, doi: 10.1109/ISMSIT56059.2022.9932838. 

[17] L. V. Sari, R. P. Rosalin, and S. Uyun, “Classification fracture in X-ray images using VGG16 feature extraction and principal 
component analysis,” 2024 12th International Conference on Cyber and IT Service Management, CITSM 2024, pp. 1–6, 2024, 

doi: 10.1109/CITSM64103.2024.10775981. 

[18] H. Min et al., “Automatic classification of distal radius fracture using a two-stage ensemble deep learning framework,” Physical 
and Engineering Sciences in Medicine, vol. 46, no. 2, pp. 877–886, 2023, doi: 10.1007/s13246-023-01261-4. 

[19] L. Zou, H. F. Lam, and J. Hu, “Adaptive resize-residual deep neural network for fault diagnosis of rotating machinery,” Structural 

Health Monitoring, vol. 22, no. 4, pp. 2193–2213, Jul. 2023, doi: 10.1177/14759217221122266. 
[20] M. Tan and Q. V. Le, “EfficientNetV2: smaller models and faster training,” Proceedings of Machine Learning Research,  

vol. 139, pp. 10096–10106, Apr. 2021, doi: 10.48550/arXiv.2104.00298. 

[21] G. Zhang and W. Abdulla, “Optimizing hyperspectral imaging classification performance with CNN and batch normalization,” 

Applied Spectroscopy Practica, vol. 1, no. 2, Sep. 2023, doi: 10.1177/27551857231204622. 



Comput Sci Inf Technol  ISSN: 2722-3221  

 

Optimizing efficientNet for imbalanced medical image classification using grey wolf … (Khusnul Khotimah) 

121 

[22] L. T. Duong, P. T. Nguyen, C. Di Sipio, and D. Di Ruscio, “Automated fruit recognition using EfficientNet and MixNet,” 
Computers and Electronics in Agriculture, vol. 171, Apr. 2020, doi: 10.1016/j.compag.2020.105326. 

[23] A. Aljohani, N. Alharbe, R. E. Al Mamlook, and M. M. Khayyat, “A hybrid combination of CNN attention with optimized 

random forest with grey wolf optimizer to discriminate between Arabic hateful, abusive tweets,” Journal of King Saud University 
- Computer and Information Sciences, vol. 36, Feb. 2024, doi: 10.1016/j.jksuci.2024.101961. 

[24] Q. Xie, Z. Guo, D. Liu, Z. Chen, Z. Shen, and X. Wang, “Optimization of heliostat field distribution based on improved gray wolf 

optimization algorithm,” Renewable Energy, vol. 176, pp. 447–458, Oct. 2021, doi: 10.1016/j.renene.2021.05.058. 
[25] R. Mohakud and R. Dash, “Designing a grey wolf optimization based hyper-parameter optimized convolutional neural network 

classifier for skin cancer detection,” Journal of King Saud University-Computer and Information Sciences, vol. 34, no. 8,  

pp. 6280–6291, Sep. 2022, doi: 10.1016/j.jksuci.2021.05.012. 
[26] P. M. Kitonyi and D. R. Segera, “Hybrid gradient descent grey wolf optimizer for optimal feature selection,” BioMed Research 

International, vol. 2021, no. 1, Jan. 2021, doi: 10.1155/2021/2555622. 

[27] G. Wolf and O. Gwo, Advanced optimization by nature-inspired algorithms, vol. 720. Singapore: Springer Singapore, 2018,  
doi: 10.1007/978-981-10-5221-7. 

[28] M. C. Neves, J. Filgueiras, Z. Kokkinogenis, M. C. F. Silva, J. B. L. M. Campos, and L. P. Reis, “Enhancing experimental image 

quality in two-phase bubbly systems with super-resolution using generative adversarial networks,” International Journal of 
Multiphase Flow, vol. 180, Nov. 2024, doi: 10.1016/j.ijmultiphaseflow.2024.104952. 

[29] P. I. Ritharson, K. Raimond, X. A. Mary, J. E. Robert, and A. J, “DeepRice: a deep learning and deep feature based classification of 

rice leaf disease subtypes,” Artificial Intelligence in Agriculture, vol. 11, pp. 34–49, Mar. 2024, doi: 10.1016/j.aiia.2023.11.001. 
[30] Y. Wang et al., “PGKD-Net: prior-guided and knowledge diffusive network for choroid segmentation,” Artificial Intelligence in 

Medicine, vol. 150, 2024, doi: 10.1016/j.artmed.2024.102837. 

[31] D. K. Saha, A. M. Joy, and A. Majumder, “YoTransViT: a transformer and CNN method for predicting and classifying skin 
diseases using segmentation techniques,” Informatics in Medicine Unlocked, vol. 47, 2024, doi: 10.1016/j.imu.2024.101495. 

 

 

BIOGRAPHIES OF AUTHORS 

 

 

Khusnul Khotimah     is an undergraduate student of Mathematics at Universitas 

Ahmad Dahlan. Her academic interests include statistics, machine learning, and deep learning. 

Currently, she focuses on computer vision but remains open to exploring other fields in 

artificial intelligence technology. She can be contacted at email: 

khusnul2100015009@webmail.uad.ac.id. 

  

 

Sugiyarto Surono     is a professor and senior lecturer in Mathematics at 

Universitas Ahmad Dahlan. He obtained his master’s degree in Mathematics from Universitas 

Gadjah Mada and earned his Ph.D. from Universiti Malaysia Terengganu. His areas of 

expertise include optimization and control, queuing theory, fuzzy mathematics, machine 

learning, and deep learning. As a professor, he actively teaches and mentors students, 

integrating various scientific disciplines with data science applications. His goal is to raise 

students’ awareness of the importance of mathematical science in technological development. 

Through this approach, he aims to make a significant contribution to preparing the younger 

generation for future technological challenges. He can be contacted at email: 

sugiyarto@math.uad.ac.id. 

  

 

Aris Thobirin     is a senior lecturer in Mathematics at Universitas Ahmad Dahlan. 

He earned his master’s degree in Mathematics from Universitas Gadjah Mada. His areas of 

expertise include analysis and algebra, particularly in applying algebraic theory to  

problem-solving. He is also interested in the implementation of big data and machine learning. 

In addition, he actively provides training on innovative learning models. He can be contacted 

at email: aris.thobi@math.uad.ac.id. 

 

https://orcid.org/0009-0005-9415-2244
https://scholar.google.com/citations?hl=id&user=GH9rBKgAAAAJ&scilu=&scisig=AC8hv-oAAAAAaALte4NEv-2GO-h2wNS1Q6PD9wU&gmla=ANZ5fUPcWndosMdk98aMg67J5VvGd-zn-5lzSxLh6aC3MqZWMNe-15qkGYUmBxSGs0qOEL4s4ew9jlTxGXTqhyXLtJTXj7wjH6aB93ubTHLqZokPnoo47TNGF4Q&sciund=11112517937809659040
https://orcid.org/0000-0001-6210-7258
https://scholar.google.co.id/citations?user=7PjwF4kAAAAJ&hl=en
https://www.scopus.com/authid/detail.uri?authorId=57216398329
https://orcid.org/0009-0006-9823-4746
https://scholar.google.co.id/citations?hl=en&user=zfYkdPMAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57205055984

