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1. INTRODUCTION

The development of information technology, particularly internet of things (10T) devices, is
progressing rapidly and is directly proportional to the increasing number of 10T device users, both individuals
and industries. The role of 10T devices has influenced all areas directly related to technology and business,
enhancing benefits for both individuals and organizations [1]. 10T devices enhance user experiences by
providing immediate data access yet introduce a multitude of cybersecurity vulnerabilities across different
operational layers. Cyber-attacks on these devices can be categorized as goal-oriented attacks (targeting
objectives like unauthorized access or data exfiltration), performance-oriented attacks (such as DoS/DDoS
efforts that degrade system availability), and layer-oriented attacks (exploiting weaknesses at the edge,
access/middleware, or application layers). Addressing these threats requires tailored security
strategies—from fortified cloud services and resilient 5G network designs to protections that account for loT
devices’ heterogeneous nature and limited computing resources.[2]. The application of transfer learning
methods in deep learning has been widely used to train models and is effective in identifying attacks.
Transfer learning models can achieve optimal performance more quickly than traditional machine learning

Journal homepage: http://iaesprime.com/index.php/csit


https://creativecommons.org/licenses/by-sa/4.0/

Comput Sci Inf Technol ISSN: 2722-3221 a 203

models because these models leverage knowledge (features and weights) from previous models that already
understand these features, making it faster than training a neural network from scratch. Additionally, transfer
learning is more computationally efficient and helps achieve better results using a small dataset [3].

Clustering-enhanced transfer learning approach (CeHTL), an enhanced approach that automatically
determines the relationship between new and known attacks [4]. An improved convolutional neural network
(ICNN) characterizes and preprocesses network traffic data, extracts advanced features, and optimizes
parameters with stochastic gradient descent [5]. Deep transfer learning method that uses two autoencoders to
align feature representations and effectively detect 10T attacks, outperforming other approaches on nine loT
datasets [6]. Intrusion detection model that uses convolutional neural networks in 1D, 2D, and 3D, along with
transfer learning to handle binary and multiclass classification [7]. Efficient network-based intrusion
detection system for 1oT networks that combines a deep neural network (DNN) with mutual information
(MI)-based feature selection to detect anomalies and zero-day cyberattacks.[8]. Transfer learning approach to
updating intrusion detection systems (IDS) that have become outdated due to their heavy reliance on initial
training datasets and their inability to detect changes in attacks [9]. Deep transfer learning framework using
weight transferring and neural network fine-tuning for end-to-end learning, addressing concept drift and
reducing human intervention [10]. The experiments showed that the individual DNN, RNN, or CNN
approaches are better than the combined models (CNN+RNN and CNN+LSTM) [11]. A transfer learning
framework using an optimal source domain dataset improves network-level intrusion detection [12].
Federated transfer learning (FTL) framework for 10T network intrusion detection uses a neural network that
distributes 10T data processing between client and server devices [13]. Deep transfer learning approach for
rolling bearing fault diagnosis using a 1D-CNN extracts features from vibration signals and uses CORrelation
ALignment (CORAL) to minimize the marginal distribution discrepancy between source and target
domains [14]. The suitability of deep learning for anomaly-based IDS by developing models using various
deep neural network architectures including CNNs, AEs, and RNNs [15]. Transfer learning—based IDS for
cloud-based IoT environments, addressing the increased security risks inherent in centralized data processing
[16]. Unified indoor—outdoor localization solution for 10T devices in smart cities using an encoder-based
transfer learning scheme, the proposed approach builds a single deep learning model that adapts across both
indoor and outdoor settings, reducing complexity and costs [17]. Sequential intrusion detection system that
leverages deep learning techniques specifically, Text-CNN and GRU to extract features from the network
layer and the application layer, treating sequential data like a language model.[18]. In relation to the studies,
we proposed model 1D-CNN architecture in Ubuntu environment. The main purpose of this research is to
produce a model using deep transfer learning methods that is trained with a source domain dataset, where the
model can detect both known and unknown attacks in the target domain dataset with small dataset. In other
research, two-dimensional convolutional neural network (CNN2D) architecture is used to build model in
Windows environment [19].

2. METHOD
2.1. Background theory

Transfer learning is an important tool in machine learning to address the fundamental problem of
insufficient training data. It attempts to transfer knowledge from the source domain to the target domain by
relaxing the assumption that training and testing data must be integrated, identically distributed (11D).
This will lead to significant positive effects for many domains that are difficult to improve due to a lack of
training data. The definition of transfer learning can be described as follows: a learning task is assigned to Tt
based on Dt and can receive assistance from Ds for the learning task Ts. Transfer learning aims to enhance
the performance of the predictive function fT(.) for the learning task Tt by identifying and transferring latent
knowledge from Ds and Ts where Ds=Dt and/or Ts=Tt. In many cases, the size of Ds is larger than Dt,
Ns>>Nt [20].

The concept of loT was created by a member of the radio frequency identification (RFID)
development community in 1999. Generally, 10T is defined as a network of physical objects. The internet is
not only a network of computers but has evolved into a network of devices of all kinds and sizes, including
vehicles, smartphones, household appliances, medical equipment, industrial systems, humans, animals,
buildings, all connected and communicating and sharing information based on established protocols to
achieve intelligent reorganization, placement, tracking, security, and control, as well as personal online
monitoring, process control, and administration [21]. The number of 10T devices is rapidly increasing, and
the lack of security in these devices has made them targets for criminal activities. Figure 1 presents the
variations of cyber security attacks that occur at the 10T layers such as the perception, support, network, and
application layers [22].

CNN is a highly powerful class of deep learning that is widely applied in various tasks, including
object detection, speech recognition, computer vision, image classification, bioinformatics, and time series
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prediction tasks. CNNs are feedforward neural networks that utilize convolutional structures to extract features
from data. Unlike traditional methods, CNNs automatically learn and recognize features from data without
requiring manual feature extraction by humans. The design of CNNs is inspired by visual perception.
The main components of CNNs include convolutional layers, pooling layers, and fully connected layers.
The convolution layer is a crucial component of CNNs. Through several convolutional layers, the convolution
operation extracts different features from the input. Pooling layer: typically following the convolution layer, the
pooling layer reduces the number of connections in the network by performing dimensionality reduction on the
input data. Its primary objective is to decrease the computational load and address the issue of overfitting.
The pooling operation produces an output feature map that is more resilient to distortions and errors in the
neurons. Fully connected: the fully connected layer is typically located at the end of the CNN architecture.
In this layer, each neuron is connected to all neurons in the previous layer, following the principles of
conventional multi-layer perceptron neural networks. The fully connected layer receives input from the last
pooling or convolution layer, which is a vector created by flattening the feature maps. The fully connected layer
serves as the classification component in CNNs, enabling the network to make predictions [23].
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Figure 1. Variations in cybersecurity attacks at the 10T layer [22]

2.2. Methodology
In this research, the methodology employed is divided into 5 stages, which are explained as follows:
— Phase 1: data preprocessing 10T BoT dataset
— Phase 2: data preprocessing UNSW-NB15 dataset
— Phase 3: build and train — test model 1 with 0T BoT dataset for base model and UNSW-NB15 for testing
model 1 without transfer learning
— Phase 4: build and train — test model 2 which model 1 updated with transfer learning form base model
— Phase 5: evaluation model 2
The research methodology diagram can be seen in Figure 2.

2.3. Data preparation, treatment, and preprocessing

In this research, development of the model focuses on building a model capable of detecting and
classifying various types of 10T attacks. In this regard, two datasets are utilized for the source and transfer
domains containing streams of normal 10T traffic and cyber-attacks. BoT-10T dataset is used for the source
domain because it contains a substantial amount of loT network activity data, whereas UNSW-NB15 dataset
is used for the target domain due to its rarity and disproportionate representation of 10T network traffic
comprised of cyber-attacks. To evaluate attack detection, four different datasets will be created as described.

Bot-10T dataset as source domain dataset has a volume of 73 million sample [24]. For this research,
5% of the dataset will be used, totaling approximately 3.6 million samples [25]. The 5% dataset includes
normal traffic samples and 4 categories of attacks, namely denial of service (DoS), distributed denial of
service (DDoS), reconnaissance, and information theft which shown in Table 1.
UNSW-NB15 as target domain dataset [26], created using the IXIA PerfectStorm tool in the
Cyber Range Lab at UNSW Canberra to generate a combination of modern normal activities and synthetic
contemporary attack behaviors. The Argus tool and Bro-1DS were utilized, and 12 algorithms were developed to
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produce 49 features labeled as normal and attack. The attack categories were classified into 9 groups based on

the nature of the

attacks [27]. The total number of records is 2,540,047 which shown in Table 2.
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Figure 2. Research methodology diagram
Table 1. Distribution of Bot-10T 5% dataset
Name Subcategory Description Record %
Normal Normal Natural transaction 477 0.00
DDos TCP Attack where multiple compromised computer systems attack a 1,926,624 52.51
UDP target, causing a DOS
HTTP
Dos TCP A malicious attack to cripple the services offered by a site, server 1,650,260 44.97
UDP or network overloading the target of its associated by flooding
HTTP the site with many requests
Reconnaissance oS All the different strikes simulating attacks gathering information 91,882 2.50
Fingerprinting
Service
Scanning
Information theft ~ Keylogging Stealing of personal user information 79 0.00
Data exfiltration
Table 2. Distribution of UNSW-NB15 dataset
Name Description Record %
Normal Natural transaction data 2,218,764  87.35
Generic Attack against blockciphers with a given block and key size (not considering its structure) 215,481 8.48
Exploits Attack that exploits vulnerabilities, taking advantage of security problems (of an operating 44,525 1.75
system or a piece of software) known by the attackers.
Fuzzers Attack that suspends a program or network, feeding it with randomly generated data. 24,246 0.95
Dos A malicious attack that makes a server or network resource unavailable, overloading the 16,353 0.64
target of the associated infrastructure with a flood of Internet traffic.
Reconnaissance  Comprises different attacks that gather information. 13,987 0.55
Analysis Different attacks on penetrations (HTML files, spam, and port scan) 2,677 0.11
Backdoor An attack that bypasses a system security mechanism to access a computer or its data. 2,329 0.09
Shellcode Attack that exploits software vulnerabilities using small pieces of code as payloads. 1,511 0.06
Worms Attack where the attacker replicates itself to spread to other computers. 174 0.01
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As indicated by the distribution of UNSW-NB15, which exhibits a ratio of 87% normal traffic and
13% attack traffic, the system functions in a balanced manner between these two traffic categories. This was
subsequently balanced to approximate a realistic scenario, resulting in 50% of normal traffic and 50% of
attacks. To ascertain the efficacy of the transfer learning-based model in detecting both known and unknown
attacks, three distinct datasets were generated in the target domain and are presented in Table 3.

a) UNSW-NB15 base4: dataset containing normal traffic and three type of known attacks (generic, DaS,
and reconnaissance) used for training and divided into two subdataset:

— UNSW-NB15_base4 train : 75% of UNSW-NB15_base4 to train model 1.
— UNSW-NB15_base4 test : 25% of UNSW-NB15 base4 to evaluate the effectiveness in detection of
known attacks.

b) UNSW-NB15_first-test: dataset to evaluate effectiveness in detection of unknown attacks (exploits,
fuzzers, analisis, backdoor, shellcode, and worms).

c) UNSW-NB15_full-test: dataset to evaluate effectiveness in detection of attack type known attacks
(generic, DoS, and reconnaissance) and unknown attacks (exploits, fuzzers, analisis, backdoor, shellcode,
and worms).

It is important to note that phases 1 and 2 of the frameworks involve data processing. In the transfer
learning-based model under design, the output from the convolutional base is utilized as input for the
classifier. Subsequently, the datasets for the source and target domains must be trained with the same input
formats and features. For this study, new versions were generated for both datasets with their 15 common
features, which are shown in Table 4.

In this phase, the columns with string formats are converted to numeric formats using the one hot
encoding (OHE) method. The columns formatted in hexadecimal (HEX) are converted to decimal (DEC)
format. A logarithmic procedure is applied to the columns (ie., dur, shytes, dbytes, and spkts) which have
concentrated values at 0. Standard normalization of the dataset is performed to prevent overfitting and
potential bias in the results. Finally, the data is transformed into an image format into a 1D format
(i.e., a vector of length 24 yielding dimensions of [1], [24]).

Table 3. Distribution of UNSW-NB15 subdataset
UNSW-NB15_base4_train  UNSW-NB15_base4_test UNSW-NB15_first-test

UNSW-NB15_full-test

Name Record % Record % Record % Record %

Normal 183,969 51.67 61,465 50.01 75,462 50.00 321,283 50.00

Generic 160,198 44.99 53,938 43.88 215,481 33.53

Exploits 44,525 29.50 44,525 6.93

Fuzzers 24,246 16.07 24,246 3.77

Dos 8,971 2.52 4,073 331 16,353 2.54

Reconnaissance 2,909 0.82 3,434 2.79 13,987 2.18

Analysis 2,677 177 2,677 0.42

Backdoor 2,329 1.54 2,329 0.36

Shellcode 1,511 1.00 1,511 0.24

Worms 174 0.12 174 0.03
Table 4. 15 common features in both dataset

No Bot-loT UNSWNB-15 Type Description

1 Proto Proto Nominal Textual representation of transaction protocols presents in network flow

2 Saddr Srcip Nominal Source IP address.

3 Sport Sport Integer Source port number.

4 Daddr Dstip Nominal Destination IP address.

5 Dport Dsport Integer Destination Port number.

6 Spkts Spkts Float Source-to-destination packet count

7 Dpkts Dpkts Float Destination-to-source packet count.

8 Shytes Shytes Float Source-to-destination byte count

9 Dbytes Dbytes Float Destination-to-source byte count.

10 State State Nominal Transaction state.

11 Stime Stime Timestamp  Record start time.

12 Ltime Ltime Timestamp  Record end time.

13 Dur Dur Float Record total duration.

14 Attack Label Binary Class label: 0 for normal traffic, 1 for attack.

15  Category attack_cat Nominal Cyberattack family.

2.4. Transfer learning and model design
In phase 3, model 1 is constructed as a base model using the BoT-loT dataset, which has been
randomly partitioned into 75% training data and 25% testing data. In phase 4, model 1 experienced an update
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that integrated the knowledge acquired in the source domain into the target domain, resulting in the formation
of model 2. In model 2, the convolutional base of the original base model is fixed, and the classifier is fed
with its outputs. Model 2 is trained using the UNSW-NB15_Base4_train dataset, which represents 75% of
the UNSW-NB15 Base4 dataset. In the final phase of the evaluation, model 2's capabilities to detect both
known and unknown attacks will be assessed by wusing the UNSW-NB15 first test and
UNSW-NB15_full_test datasets. This approach encompasses both known and unknown attack scenarios,
thereby ensuring a comprehensive assessment of Model 2's capabilities.

This study designs and develops a 1D-CNN for attack detection in 10T networks. Model 1 serves as
the base model, and model 2 adds knowledge from it. The proposed models are outlined in Figure 3. The first
model (hereafter referred to as "model 1") consists of an input layer, two blocks of convolution layers, a
flatten layer, a fully connected layer, and an output layer. Each block comprises a convolutional layer, a
normalization layer, a pooling layer, and a dropout layer. The convolution layer is a critical component of
deep learning algorithms, responsible for extracting features from raw data. It accomplishes this by learning
data attributes from small sub-samples of the input data, ensuring the preservation of the underlying
associations between data points. The objective of layer normalization is to normalize all inputs to a specific
neural network layer. The layer normalization layer is responsible for standardizing the output of the
convolution layer for the max pooling layer. The max pooling layer is responsible for determining the total
number of features present in each patch. It identifies the features that demonstrate the greatest dominance
within specific localized regions. This process enables the network to prioritize the most significant elements
while effectively reducing redundancy. A spatial dropout layer is employed to eliminate the entire feature
map rather than individual units. The flatten layer is fully connected to a dense layer. The final layer of the
model is designated as the output layer for binary classification.

Model 2 represents an updated version of model 1. It comprises an input layer, a frozen layer with
transfer learning for the base model, a flatten layer, three blocks of fully connected layers with a dropout
layer, and an output layer. The input layer contains an equal number of features. During the training of the
binary classification model, the convolution layers, normalization layers, pooling layers, dropout layers, and
flatten layers were frozen. During the training phase, learning was permitted exclusively in the dense and
output layers. As demonstrated in Figure 3, a general perspective from both models is presented.

I Ll l Input Layer , | Input K Input Layer

| | MaxPooling 1D | |
- {[___Spatial Dropout__ ]! |

- | [ Nomalization ] | | |
| [ MaxPooling 1D ”
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Figure 3. General view of model 1 and model 2
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In model 1, the input for 1D-CNN is two-dimensional. Initially, an input vector [1], [24] is generated
to accommodate the 15 common features in phases 1 and 2. Subsequent to the incorporation of the input
layer, the model was augmented with four convolution layer blocks. The convolution operation in the first
layer is configured with a 64-filter configuration, a 24-filter kernel size, a rectified linear unit (ReLU)
activation function, and the same padding parameter. The layer normalization adjusts the preceding layer
activation separately for each sample in a given batch. The maximum pooling layer provides a solution that
ensures the preservation of the most salient features, thereby enhancing the efficiency of the training process
and improving the performance of the model. A spatial dropout layer is employed to regularize the training
data model and mitigate overfitting, with a drop value of 0.05. It is noteworthy that each of the four
convolution layers employs identical parameters. The classification component comprises fully connected,
flattened, and dense layers. The flatten layer is applied to the model, thereby transforming the tensor into a
shape that is equivalent to the tensor elements. The flatten layer is connected to a fully connected dense layer,
and the dense layer is connected to the output layer. The dense layer contains 512 neurons, and a single
neuron is responsible for implementing the sigmoid activation function in the output layer. The model has
been trained over the course of 15 epochs, with a batch size of 256 and an Adam optimizer with a learning
rate of 2x10° This training process has been implemented to minimize the error function and the binary
cross-entropy loss function.

In model 2, the convolution layer from the model 1 is to be frozen in order to prevent weight
changes during training. This layer is to be followed by three blocks of fully connected layers. The first layer
consists of 512 neurons with a drop value of 0.4, the second layer consists of 256 neurons with a drop value
of 0.3, and the last layer consists of 128 neurons with a drop value of 0.2. The output layer is comprised of a
single neuron that exhibits sigmoid activation. The model has been trained over 50 epochs, with a batch size
of 4096, an Adam optimizer with a learning rate of 6x10°, and a binary cross-entropy loss function. The
training parameters for both models are summarized in Table 5.

2.5. Evaluation metrics

In phase 5, the two models are validated using accuracy, precision, recall, F1-score, and area under
the receiver operating characteristic curve (AUC-ROC) score. Accuracy is defined as the proportion of
samples that are correctly identified, expressed as a percentage of the total number of samples. Precision is
quantified by the proportion of instances that are accurately classified to the total true positive (TP) and false
positive (FP) cases. The calculation of recall is determined by the division of the total number of TP
measurements by the total TP and false negative (FN) measurements. The F1-score is determined by the
calculation of the weighted average of precision and recall. Furthermore, the CNN model's validation is
supported by the false positive rate (FPR), defined as the number of normal samples that are classified as
positive, and the false negative rate (FNR), denoting the number of abnormal samples that are identified as
negative. The Matthews correlation coefficient (MCC) is a metric that considers true and false positives and
negatives, thereby providing a balanced measure of classification performance. The range of possible values
is from -1 to 1. In this context, 1 indicates perfect prediction, 0 indicates no better than random chance, and -
1 indicates total disagreement between prediction and true prediction [28].

(TP+TN)

Accuracy = GPEPTTN TN (D)
Precision = (TPTfFP) )
Recall = (TPT+PFN) 3)
Plscore =2 x gttty @
MCC TPX TN—FPXFN (5)

= J(TP+ FP)X(TP+FN)X(TN+FP)x(TN+FN)

2.6. System setup

The transfer learning experimental environment was constructed on an Asus X441UB laptop, which
is supported by the following hardware specifications: an Intel® Core™ i3-6006U CPU @ 2.0 GHz
processor and 8 GB of RAM DDRA4. This laptop model is supported by an NVIDIA® GeForce® MX110 2
GB GDDR3 graphics card with a GPU driver, cuda 12.2.2, CuDNN 8.9.7.29, and TensorRT 10.2.0. The
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operating system utilized in this study is Ubuntu 22.04 OS, which is equipped with Python 3.11.0,
Tensorflow 2.15.1, Scikit-Learn, and Keras packages.

Table 5. The parameter of model 1 and model 2

Layer Name Model 1 Model 2
Number Description Number Description
Input Input layer 1 24 fitur 1 24 fitur
Hidden layer ConvlD 2 Filter =64, Padding = same,
Kernel_size =24, Activation =
RelLu
Normalization 2
MaxPool1D 2 Pool_size =2, Padding = same
Spatial dropout 2 Rate =0.05
Classification Dense 1 Neuron =512, Activation = 1 Neuron =512, Activation =
Relu Relu, Dropout =0.4
1 Neuron =256, Activation =
Relu, Dropout =0.4
1 Neuron =128, Activation =
Relu, Dropout =0.2
Output Output layer 1 Neuron=1, Activation = 1 Neuron =1, Activation =
Sigmoid Sigmoid
Hyperparameters  Early stopping (monitor = val_loss, patience =5) Early stopping (monitor = val_loss,
Optimizers = Adam patience =5), optimizers = Adam
Loss function =BinaryCrossentrophy Loss function = BinaryCrossentrophy
Learning rate =2e-5 Learning rate =6e-5
Batch size =256 Batch size =4096
Epoch =15 Epoch =50

3. RESULTS AND DISCUSSION
3.1. Evaluation model 1 as base model

Model 1 as base model is trained using the 5% BoT-loT has an optimal attack detection rate with
accuracy, precision, recall, and F1-score achieve 100% and MCC of 0.9502 meaning that almost all traffic
can be detected accurately. However, some normal traffic is identified by the model as attack traffic, and
some attack traffic, particularly reconnaissance type traffic, is detected as normal traffic. The complete
results of traffic detection from this model are shown in Tables 6 and 7.

Table 6. Performance of base model Table 7. Metrics of base model
Name Detected Not detected % Detected Metrics Value
Normal 104 2 98.11 Accuracy 100.00%
DDos 385,282 0 100.00 Precision 100.00%
Dos 330,097 0 100.00 Recall 100.00%
Reconnaissance 16,438 9 99.95 F1-Score 100.00%
Information theft 16 0 100.00 MCC 0.9502

3.2. Evaluation model 1 without transfer learning

In this stage, model 1 is trained using the UNSW-NB15-Base4_train dataset and tested using the
UNSW-NB15-first_test dataset. The dataset contains types of attacks that have not been trained (unknown
attacks), allowing for the assessment of model 1's ability to detect new types of attacks. Model 1 is capable of
detecting normal traffic well, but for unknown attack, especially fuzzers and analysis, it has a low detection
rate of 48.17% and 41.64% respectively. Furthermore, model 1 will be tested with UNSW-NB15_full_test to
determine the extent to which detecting known attacks and unknown attacks. The capability of model 1 for
attack detection is quite good. However, there are still types of attacks that remain inadequately detectable,
such as backdoor and shellcode, it has a low detection rate of 82.07% and 84.65%. The complete results of
traffic detection from model 1 are shown in Table 8.

3.3. Evaluation model 2 (model 1 with transfer learning)

At this stage, model 2 is constructed where model 1 is enhanced with transfer learning, allowing for
understanding that the use of transfer learning can assist model 2 in detecting both known and unknown
attacks more effectively compared to model 1. In first test using UNSW-NB15 _first_test dataset, model 1 has
ability to detect unknown attacks and has improved because of transfer learning compared to without it. Only
the fuzzers and worms have a detection rate of 96%, while others have rates above 97%. The second test will
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use the UNSW-NB15 full test dataset, which includes both known and unknown attacks. For unknown
attack types, analysis has the highest detection rate at 99.84%, while backdoors have the lowest detection rate
at 89.36%. For known attack detections, reconnaissance has the highest detection rate at 99.94%, and exploits
have the lowest detection rate at 94.53%. The complete results of the detection rate from model 2 are shown
in Table 9.

Table 8. Detection rate in model 1 without transfer learning

Name UNSW-NB15-first_test UNSW-NB15_full_test
Detected  Notdetected % Detected Detected  Not detected % Detected
Normal 74,518 794 98.95 316,086 4,507 98.59
Generic 213,545 173 99.92
Exploits 18,556 9,761 65.53 25,741 2,576 90.90
Fuzzers 10,365 11,152 48.17 20,643 874 95.94
Reconnaissance 11,835 19 99.84
DoS 3,650 213 94.49
Shellcode 1,297 214 85.84 1,279 232 84.65
Analysis 259 363 41.64 607 15 97.59
Backdoor 244 113 68.35 293 64 82.07
Worms 67 67 50.00 169 5 97.13

Table 9. Detection rate in model 2 (model 1 with transfer learning)

Name UNSW-NB15-first_test UNSW-NB15_full_test
Detected  Not detected % Detected  Detected  Not detected % Detected
Normal 72,903 2,409 96.80 316,039 4,554 98.58
Generic 213,692 26 99.99
Exploits 27,588 729 97.43 26,768 1,549 94.53
Fuzzers 20,725 792 96.32 21,017 500 97.68
Reconnaissance 11,847 7 99.94
DoS 3,779 84 97.83
Shellcode 1471 40 97.35 1,359 152 89.94
Analysis 621 1 99.84 621 1 99.84
Backdoor 350 7 98.04 319 38 89.36
Worms 168 6 96.55 169 5 97.13

3.4. Validation of the model

First, the detection rate from both tests compared and indicated a significant improvement. Overall,
in first test, UNSW-NB15 first_test dataset used, each type of unknown attack showed improvement,
particularly for analysis, which increased by 58.20% from 41.64% to 99.84%, and fuzzers, which increased
by 48.15% from 48.17% to 96.32%, while the detection of normal traffic has decreased from 98.95 to
96.80%. The detection of normal traffic is slightly lower because the training of model 1 was conducted with
the BoT-loT dataset, which has a very small percentage of normal traffic compared to attack traffic.
In second test used UNSW-NB15_full_test to assess its capability in detecting both known and unknown
attacks. Overall, each type of unknown attack has also shown an increase, with unknown attack types such as
backdoors and exploits exhibiting a significant improvement of 7.72% and 5.29% while for known attacks,
DoS increased by 3.34% from 94.49% to 97.83%, respectively. However, the detection rate of normal traffic
still slightly decreased by -0.01%.

The complete results of the comparison and improvement detection rates from both models are
shown in Table 10. The following conclusions can be drawn from this data. It has been demonstrated that
Model 2, when employing the transfer learning method, exhibits an enhanced detection rate for both known
and unknown attacks. The known attack detection rate ranges from 97.83% to 99.99%, with the unknown
attack detection rate ranging from 89.36% to 99.84%. A comparison of models 1 and 2 reveals that the latter,
utilizing transfer learning, enhances the detection rate for unknown attacks by up to 58.20%, and for known
attacks by up to 7.29%. Therefore, model 2 with transfer learning demonstrates a significant enhancement in
the detection of both known and unknown attacks, despite the reduced representation in the dataset, when
compared with the model.

Comparison was made between the evaluation metrics from both tests. Model 1 was initially
evaluated for its capacity to detect unknowns using the UNSW-NB15_first_test dataset. The model's overall
accuracy was found to be 82.42%, with a precision of 58.69%, a recall of 97.49%, an F1-score of 63.64%,
and an MCC of 0.6573. Model 1 was also evaluated for the detection of both unknown and known attacks
using the UNSW-NB15-full_test dataset. In this particular instance, the accuracy rate was recorded at
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98.55%, the precision rate at 98.50%, the recall rate at 98.34%, the F1-score at 87.29%, and the MCC at
0.9709. A comparative analysis of the overall metrics for both solutions reveals that model 2 exhibits
superior performance in all metrics when compared to model 1. The accuracy, precision, and F1-score
metrics have been enhanced by 14.49%, 38.31%, and 22.95%, respectively, in the detection of unknown
attacks. Furthermore, these metrics have been improved by 0.31%, 0.67%, and 0.34%, respectively, when
considering both known and unknown attacks.

Evaluation metrics from both tests are compared. Model 1 was evaluated first on the detection of
unknown with the UNSW-NB15 _first_test dataset. It achieves an overall accuracy of 82.42%, a precision of
58.69%, a recall of 97.49%, an F1-score of 63.64%, and an MCC of 0.6573. Model 1 was also evaluated for
the detection of both unknown and known attacks using the UNSW-NB15-full_test dataset. In this case, the
accuracy is 98.55%, precision is 98.50 %, recall is 98.34%, F1-score is 87.29%, and MCC is 0.9709. If the
overall metrics for both solutions are compared, we can conclude that model 2 outperforms model 1 for all
metrics. Accuracy, precision and F1-score are improved by 14.49%, 38.31%, and 22.95% in the detection of
unknown, and 0.31%, 0.67%, and 0.34% respectively when considering both known and unknown attacks.
The primary factor contributing to this enhancement is the faster convergence of the optimization algorithm
to optimal weights in model 2 when the weights are initialized in a similar domain. This contrasts with
model 1, which commences from the beginning and utilizes random weights. Another metric that has shown
notable improvement is MCC. Model 2 demonstrates higher MCC values due to two primary factors: the
occurrence of unknown attacks and the imbalanced nature of the dataset. It can be concluded from these
factors that model 2 makes superior predictions in terms of attack detection. This is a critical consideration in
adapting the model to different 10T device traffic patterns. As demonstrated in Table 11, this study provides a
comprehensive evaluation of the performance metrics from models 1 and 2.

Table 10. Comparison and improvement detection rate in model 1 and model 2

Name UNSW-NB15-first_test UNSW-NB15-full_test

Model 1 (%) Model 2 (%) Improve (%) Model 1 (%) Model 2 (%)  Improve (%)
Normal 98.95 96.80 -2.15 98.59 98.58 -0.01
Generic 99.92 99.99 0.07
Exploits 65.53 97.43 31.90 90.90 94.53 3.63
Fuzzers 48.17 96.32 48.15 95.94 97.68 1.74
Reconnaissance 99.84 99.94 0.1
DoS 94.49 97.83 3.34
Shellcode 85.84 97.35 11.51 84.65 89.94 5.29
Analysis 41.64 99.84 58.20 97.59 99.84 2.25
Backdoor 68.35 98.04 29.69 82.07 89.36 7.29
Worms 50.00 96.55 46.55 97.13 97.13 0

Table 11. Comparison of evaluation metrics from model 1 and model 2

Metric UNSW-NB15-first_test UNSW-NB15-full_test
Model 1 Model 2 Improvement  Model 1 Model 2 (%)  Improvement
Accuracy  82.42%  96.88% 14.49% 98.55% 98.86% 0.31%
Precision  58.69%  97.00% 38.31% 98.50% 99.17% 0.67%
Recall 97.49%  95.48% -2.01% 98.34% 98.40% 0.06%
F1-Score  73.27%  96.22% 22.95% 98.44% 98.72% 0.34%
McCC 0.6573 0.9358 0.2785 0.9709 0.9770 0.0061

4. CONCLUSION

In this research, we investigate the detection capabilities of transfer learning-based methods for both
unknown and known attacks in 10T networks with scarce and unbalanced datasets. To this end, we develop an
efficient attack detection framework that combines knowledge transfer and model refinement, achieving high
detection accuracy for both known and unknown attacks. The BoT-loT dataset is utilized to learn knowledge
(source domain) and is applied to the UNSW-NB15 dataset (target domain). To evaluate the performance and
feasibility of the proposed transfer learning-based model, we generate UNSW-NB15 first-test dataset to
evaluate effectiveness in detection of unknown attacks and UNSW-NB15 full-test dataset to evaluate
effectiveness in detection of known and unknown attacks. We find that transfer learning and fine-tuning
improve the model for the detection of in detection of known and unknown attacks. The experimental results
show that the transfer learning-based model achieves high accuracy, precision, F1-score and MCC. For future
research, greater efforts will be made to explore and implement advanced architectures of transfer learning-
based models in addressing attack detection issues by utilizing source and target domains that have different
class labels, in order to further enhance the performance and feasibility of 10T attack detection systems.

Attack detection in internet of things networks with deep learning using ... (Riki Abdillah Hasanuddin)



212 a ISSN: 2722-3221

FUNDING INFORMATION
Authors state no external funding involved.

AUTHOR CONTRIBUTIONS STATEMENT
This journal uses the Contributor Roles Taxonomy (CRediT) to recognize individual author
contributions, reduce authorship disputes, and facilitate collaboration.

Name of Author C M So Va Fo I R D O E Vi Su P Fu
Riki Abdillah Hasanuddin v v v v v v v v vV v
Muhammad Subali v v v v v v v V

C : Conceptualization I : Investigation Vi : Visualization

M : Methodology R : Resources Su : Supervision

So : Software D : Data Curation P : Project administration
Va: Validation O : Writing - Original Draft Fu : Funding acquisition

Fo : Formal analysis E : Writing - Review & Editing

CONFLICT OF INTEREST STATEMENT
Authors state no conflict of interest.

DATA AVAILABILITY
Publicly available dataset, model, and notebook were used in this research can be found at:
https://github.com/Bedil09/Attack-detection-in-10T-networks-with-deep-learning-using-DTL-method.git

REFERENCES

[1] T. Alam, “Internet of things: review, architecture and applications,” Computer Science and Information Technologies, vol. 3,
no. 1, pp. 31-38, 2022, doi: 10.11591/csit.v3i1.p31-38.

[2] S. Chesney, K. Roy, and S. Khorsandroo, “Machine learning algorithms for preventing loT cybersecurity attacks,” in Intelligent
Systems and Applications, Cham: Springer, doi: 10.1007/978-3-030-55190-2_53.

[31 G. Sun, L. Liang, T. Chen, F. Xiao, and F. Lang, “Network traffic classification based on transfer learning,” Computers and
Electrical Engineering, vol. 69, pp. 920-927, 2018, doi: 10.1016/j.compeleceng.2018.03.005.

[4] 1. Zhao, S. Shetty, J. W. Pan, C. Kamhoua, and K. Kwiat, “Transfer learning for detecting unknown network attacks,” Eurasip
Journal on Information Security, vol. 2019, no. 1, 2019, doi: 10.1186/513635-019-0084-4.

[5] H. Yang and F. Wang, “Wireless network intrusion detection based on improved convolutional neural network,” IEEE Access,
vol. 7, pp. 64366-64374, 2019, doi: 10.1109/ACCESS.2019.2917299.

[6] L. Vu, Q. U. Nguyen, D. N. Nguyen, D. T. Hoang, and E. Dutkiewicz, “Deep transfer learning for IoT attack detection,” IEEE
Access, vol. 8, pp. 107335-107344, 2020, doi: 10.1109/ACCESS.2020.3000476.

[71 1 Ullah and Q. H. Mahmoud, “Design and development of a deep learning-based model for anomaly detection in IoT networks,”
IEEE Access, vol. 9, pp. 103906-103926, 2021, doi: 10.1109/ACCESS.2021.3094024.

[8] Z. Ahmad et al., “Anomaly detection using deep neural network for IoT architecture,” Applied Sciences, vol. 11, no. 15, 2021,
doi: 10.3390/app11157050.

[9]1 I Idrissi, M. Azizi, and O. Moussaoui, “Accelerating the update of a DL-based IDS for IoT using deep transfer learning,”
Indonesian Journal of Electrical Engineering and Computer Science, vol. 23, no. 2, pp. 1059-1067, 2021,
doi: 10.11591/ijeecs.v23.i2.pp1059-1067.

[10] J. Guan, J. Cai, H. Bai, and I. You, “Deep transfer learning-based network traffic classification for scarce dataset in 5G loT
systems,” International Journal of Machine Learning and Cybernetics, vol. 12, no. 11, pp. 3351-3365, 2021,
doi: 10.1007/s13042-021-01415-4.

[11] Y.-C. Wang, Y.-C. Houng, H.-X. Chen, and S.-M. Tseng, “Network anomaly intrusion detection based on deep learning
approach,” Sensors, vol. 23, no. 4, 2023, doi: 10.3390/s23042171.

[12] H. Kim, S. Park, H. Hong, J. Park, and S. Kim, “Transferable deep learning framework for improving the accuracy of internet of
things intrusion detection,” Future Internet, vol. 16, no. 3, 2024, doi: 10.3390/fi16030080.

[13] L. T. Rajesh, T. Das, R. M. Shukla, and S. Sengupta, “Give and take: federated transfer learning for industrial IoT network
intrusion detection,” in 2023 IEEE 22nd International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), IEEE, 2023, pp. 2365-2371, doi: 10.1109/TrustCom60117.2023.00333.

[14] J. He, X. Li, Y. Chen, D. Chen, J. Guo, and Y. Zhou, “Deep transfer learning method based on 1D-CNN for bearing fault
diagnosis,” Shock and Vibration, vol. 2021, no. 1, 2021, doi: 10.1155/2021/6687331.

[15] S. Naseer et al., “Enhanced network anomaly detection based on deep neural networks,” IEEE Access, vol. 6, pp. 4823148246,
2018, doi: 10.1109/ACCESS.2018.2863036.

[16] O. D. Okey, D. C. Melgarejo, M. Saadi, R. L. Rosa, J. H. Kleinschmidt and D. Z. Rodriguez, “Transfer learning approach to IDS
on cloud loT devices using optimized CNN,” IEEE Access, vol. 11, pp. 1023-1038, 2023, doi: 10.1109/ACCESS.2022.3233775.

[17] A. 1. Ahmed, Y. Etiabi, A. W. Azim and E. M. Amhoud, “A unified deep transfer learning model for accurate IoT localization in
diverse environments,” 2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Valencia, Spain, 2024, pp. 1-6, doi: 10.1109/PIMRC59610.2024.10817295.

Comput Sci Inf Technol, Vol. 6, No. 2, July 2025: 202-213



Comput Sci Inf Technol ISSN: 2722-3221 a 213

[18] M. Zhong, Y. Zhou, G. Chen, “Sequential model based intrusion detection system for loT servers using deep learning methods,”
Sensors, vol. 21, no. 4, doi: 10.3390/s21041113.

[19] E. Rodriguez et al., “Transfer-learning-based intrusion detection framework in IoT networks,” Sensors, vol. 22, no. 15, 2022,
doi: 10.3390/s22155621.

[20] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu, “A survey on deep transfer learning,” in Artificial Neural Networks and
Machine Learning — ICANN 2018, Cham: Springer, 2018, pp. 270-279, doi: 10.1007/978-3-030-01424-7_27.

[21] K. K. Patel and S. M. Patel, “Internet of things-loT: definition, characteristics, architecture, enabling technologies, application &
future challenges,” International Journal of Engineering Science and Computing, vol. 6, no. 5, pp. 6122-6131, 2016,
doi: 10.4010/2016.1482.

[22] N. Mishra and S. Pandya, “Internet of things applications, security challenges, attacks, intrusion detection, and future visions: a
systematic review,” IEEE Access, vol. 9, pp. 59353-59377, 2021, doi: 10.1109/ACCESS.2021.3073408.

[23] T. Perumal, N. Mustapha, R. Mohamed, and F. M. Shiri, “A comprehensive overview and comparative analysis on deep learning
models,” Journal on Artificial Intelligence, vol. 6, no. 1, pp. 301-360, 2024, doi: 10.32604/jai.2024.054314.

[24] N. Koroniotis, N. Moustafa, E. Sitnikova, and B. Turnbull, “Towards the development of realistic botnet dataset in the Internet of
Things for network forensic analytics: Bot-IoT dataset,” Future Generation Computer Systems, vol. 100, pp. 779-796, 2019,
doi: 10.1016/j.future.2019.05.041.

[25] N. Moustafa, “The Bot-IoT dataset,” UNSW Canberra. Accessed: Jun. 01, 2024. [Online]. Available:
https://research.unsw.edu.au/projects/bot-iot-dataset

[26] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for network intrusion detection systems (UNSW-NB15
network data set),” in 2015 Military Communications and Information Systems Conference (MilCIS), IEEE, 2015, pp. 1-6,
doi: 10.1109/MilCI1S.2015.7348942.

[27] N. Moustafa, “The UNSW-NBI15 dataset,” UNSW Canberra. Accessed: Jul. 01, 2024. [Online]. Available:
https://research.unsw.edu.au/projects/unsw-nb15-dataset

[28] J. Li, M. S. Othman, H. Chen, and L. M. Yusuf, “Optimizing IoT intrusion detection system: feature selection versus feature
extraction in machine learning,” Journal of Big Data, vol. 11, no. 1, 2024, doi: 10.1186/s40537-024-00892-y.

BIOGRAPHIES OF AUTHORS

Riki Abdillah Hasanuddin © E{ ©C graduated bachleor degree in Information System
from Gunadarma University. His research interests include deep learning, machine learning,
cloud computing and 1oT. He can be contacted at email: riki.abdillah@outlook.com.

Muhammad Subali © £ s working as Head Lecturer in the Faculty of Informatic
Engineering at Cendekia Abditama University, Tangerang, Banten, Indonesia. He completed
the doctoral program in 2007. His research interests include image processing, speech and
signal processing. He can be contacted at email: subali@uca.ac.id.

Attack detection in internet of things networks with deep learning using ... (Riki Abdillah Hasanuddin)


https://orcid.org/0000-0002-6213-4886
https://orcid.org/0000-0002-5129-3080
https://scholar.google.co.id/citations?user=xoE3WeEAAAAJ&hl=id
https://www.scopus.com/authid/detail.uri?authorId=57142542100

