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 Cybersecurity becomes a crucial part within the information management 

framework of internet of things (IoT) device networks. The large-scale 

distribution of IoT networks and the complexity of communication protocols 

used are contributing factors to the widespread vulnerabilities of IoT 

devices. The implementation of transfer learning models in deep learning 

can achieve optimal performance faster than traditional machine learning 

models, as they leverage knowledge from previous models that already 

understand these features. Base model was built using the 1-dimension 

convolutional neural network (1D-CNN) method, using training and test data 

from the source domain dataset. Model 1 was constructed using the same 

method as base model. The test and training data used for model 1 were 

from the target domain dataset. This model successfully detected known 

attacks at a rate of 99.352%, but did not perform well in detecting unknown 

attacks, with an accuracy of 84.645%. Model 2 is an enhancement of 

model 1, incorporating transfer learning from the base model. Its results 

significantly improved compared to model 1 testing. Model 2 has an 

accuracy and precision rate of 98.86% and 99.17 %, respectively, allowing it 

to detect previously unknown attacks. Even with a slight decrease in normal 

detection, most attacks can still be detected. 
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1. INTRODUCTION 

The development of information technology, particularly internet of things (IoT) devices, is 

progressing rapidly and is directly proportional to the increasing number of IoT device users, both individuals 

and industries. The role of IoT devices has influenced all areas directly related to technology and business, 

enhancing benefits for both individuals and organizations [1]. IoT devices enhance user experiences by 

providing immediate data access yet introduce a multitude of cybersecurity vulnerabilities across different 

operational layers. Cyber-attacks on these devices can be categorized as goal-oriented attacks (targeting 

objectives like unauthorized access or data exfiltration), performance-oriented attacks (such as DoS/DDoS 

efforts that degrade system availability), and layer-oriented attacks (exploiting weaknesses at the edge, 

access/middleware, or application layers). Addressing these threats requires tailored security  

strategies—from fortified cloud services and resilient 5G network designs to protections that account for IoT 

devices’ heterogeneous nature and limited computing resources.[2]. The application of transfer learning 

methods in deep learning has been widely used to train models and is effective in identifying attacks. 

Transfer learning models can achieve optimal performance more quickly than traditional machine learning 
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models because these models leverage knowledge (features and weights) from previous models that already 

understand these features, making it faster than training a neural network from scratch. Additionally, transfer 

learning is more computationally efficient and helps achieve better results using a small dataset [3].  

Clustering-enhanced transfer learning approach (CeHTL), an enhanced approach that automatically 

determines the relationship between new and known attacks [4]. An improved convolutional neural network 

(ICNN) characterizes and preprocesses network traffic data, extracts advanced features, and optimizes 

parameters with stochastic gradient descent [5]. Deep transfer learning method that uses two autoencoders to 

align feature representations and effectively detect IoT attacks, outperforming other approaches on nine IoT 

datasets [6]. Intrusion detection model that uses convolutional neural networks in 1D, 2D, and 3D, along with 

transfer learning to handle binary and multiclass classification [7]. Efficient network-based intrusion 

detection system for IoT networks that combines a deep neural network (DNN) with mutual information 

(MI)-based feature selection to detect anomalies and zero-day cyberattacks.[8]. Transfer learning approach to 

updating intrusion detection systems (IDS) that have become outdated due to their heavy reliance on initial 

training datasets and their inability to detect changes in attacks [9]. Deep transfer learning framework using 

weight transferring and neural network fine-tuning for end-to-end learning, addressing concept drift and 

reducing human intervention [10]. The experiments showed that the individual DNN, RNN, or CNN 

approaches are better than the combined models (CNN+RNN and CNN+LSTM) [11]. A transfer learning 

framework using an optimal source domain dataset improves network-level intrusion detection [12]. 

Federated transfer learning (FTL) framework for IIoT network intrusion detection uses a neural network that 

distributes IoT data processing between client and server devices [13]. Deep transfer learning approach for 

rolling bearing fault diagnosis using a 1D-CNN extracts features from vibration signals and uses CORrelation 

ALignment (CORAL) to minimize the marginal distribution discrepancy between source and target  

domains [14]. The suitability of deep learning for anomaly-based IDS by developing models using various 

deep neural network architectures including CNNs, AEs, and RNNs [15]. Transfer learning–based IDS for 

cloud-based IoT environments, addressing the increased security risks inherent in centralized data processing 

[16]. Unified indoor–outdoor localization solution for IoT devices in smart cities using an encoder-based 

transfer learning scheme, the proposed approach builds a single deep learning model that adapts across both 

indoor and outdoor settings, reducing complexity and costs [17]. Sequential intrusion detection system that 

leverages deep learning techniques specifically, Text-CNN and GRU to extract features from the network 

layer and the application layer, treating sequential data like a language model.[18]. In relation to the studies, 

we proposed model 1D-CNN architecture in Ubuntu environment. The main purpose of this research is to 

produce a model using deep transfer learning methods that is trained with a source domain dataset, where the 

model can detect both known and unknown attacks in the target domain dataset with small dataset. In other 

research, two-dimensional convolutional neural network (CNN2D) architecture is used to build model in 

Windows environment [19]. 

 

 

2. METHOD 

2.1.  Background theory 

Transfer learning is an important tool in machine learning to address the fundamental problem of 

insufficient training data. It attempts to transfer knowledge from the source domain to the target domain by 

relaxing the assumption that training and testing data must be integrated, identically distributed (IID).  

This will lead to significant positive effects for many domains that are difficult to improve due to a lack of 

training data. The definition of transfer learning can be described as follows: a learning task is assigned to Tt 

based on Dt and can receive assistance from Ds for the learning task Ts. Transfer learning aims to enhance 

the performance of the predictive function fT(.) for the learning task Tt by identifying and transferring latent 

knowledge from Ds and Ts where Ds=Dt and/or Ts=Tt. In many cases, the size of Ds is larger than Dt, 

Ns>>Nt [20]. 

The concept of IoT was created by a member of the radio frequency identification (RFID) 

development community in 1999. Generally, IoT is defined as a network of physical objects. The internet is 

not only a network of computers but has evolved into a network of devices of all kinds and sizes, including 

vehicles, smartphones, household appliances, medical equipment, industrial systems, humans, animals, 

buildings, all connected and communicating and sharing information based on established protocols to 

achieve intelligent reorganization, placement, tracking, security, and control, as well as personal online 

monitoring, process control, and administration [21]. The number of IoT devices is rapidly increasing, and 

the lack of security in these devices has made them targets for criminal activities. Figure 1 presents the 

variations of cyber security attacks that occur at the IoT layers such as the perception, support, network, and 

application layers [22]. 

CNN is a highly powerful class of deep learning that is widely applied in various tasks, including 

object detection, speech recognition, computer vision, image classification, bioinformatics, and time series 
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prediction tasks. CNNs are feedforward neural networks that utilize convolutional structures to extract features 

from data. Unlike traditional methods, CNNs automatically learn and recognize features from data without 

requiring manual feature extraction by humans. The design of CNNs is inspired by visual perception.  

The main components of CNNs include convolutional layers, pooling layers, and fully connected layers.  

The convolution layer is a crucial component of CNNs. Through several convolutional layers, the convolution 

operation extracts different features from the input. Pooling layer: typically following the convolution layer, the 

pooling layer reduces the number of connections in the network by performing dimensionality reduction on the 

input data. Its primary objective is to decrease the computational load and address the issue of overfitting.  

The pooling operation produces an output feature map that is more resilient to distortions and errors in the 

neurons. Fully connected: the fully connected layer is typically located at the end of the CNN architecture.  

In this layer, each neuron is connected to all neurons in the previous layer, following the principles of 

conventional multi-layer perceptron neural networks. The fully connected layer receives input from the last 

pooling or convolution layer, which is a vector created by flattening the feature maps. The fully connected layer 

serves as the classification component in CNNs, enabling the network to make predictions [23]. 
 

 

 
 

Figure 1. Variations in cybersecurity attacks at the IoT layer [22] 
 

 

2.2.  Methodology 

In this research, the methodology employed is divided into 5 stages, which are explained as follows: 

‒ Phase 1: data preprocessing IoT BoT dataset 

‒ Phase 2: data preprocessing UNSW-NB15 dataset 

‒ Phase 3: build and train – test model 1 with IoT BoT dataset for base model and UNSW-NB15 for testing 

model 1 without transfer learning 

‒ Phase 4: build and train – test model 2 which model 1 updated with transfer learning form base model 

‒ Phase 5: evaluation model 2 

The research methodology diagram can be seen in Figure 2. 
 

2.3.  Data preparation, treatment, and preprocessing 

In this research, development of the model focuses on building a model capable of detecting and 

classifying various types of IoT attacks. In this regard, two datasets are utilized for the source and transfer 

domains containing streams of normal IoT traffic and cyber-attacks. BoT-IoT dataset is used for the source 

domain because it contains a substantial amount of IoT network activity data, whereas UNSW-NB15 dataset 

is used for the target domain due to its rarity and disproportionate representation of IoT network traffic 

comprised of cyber-attacks. To evaluate attack detection, four different datasets will be created as described. 

Bot-IoT dataset as source domain dataset has a volume of 73 million sample [24]. For this research, 

5% of the dataset will be used, totaling approximately 3.6 million samples [25]. The 5% dataset includes 

normal traffic samples and 4 categories of attacks, namely denial of service (DoS), distributed denial of 

service (DDoS), reconnaissance, and information theft which shown in Table 1. 

UNSW-NB15 as target domain dataset [26], created using the IXIA PerfectStorm tool in the  

Cyber Range Lab at UNSW Canberra to generate a combination of modern normal activities and synthetic 

contemporary attack behaviors. The Argus tool and Bro-IDS were utilized, and 12 algorithms were developed to 
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produce 49 features labeled as normal and attack. The attack categories were classified into 9 groups based on 

the nature of the attacks [27]. The total number of records is 2,540,047 which shown in Table 2. 

 

 

 
 

Figure 2. Research methodology diagram 

 

 

Table 1. Distribution of Bot-IoT 5% dataset 
Name Subcategory Description Record % 

Normal Normal Natural transaction 477 0.00 
DDos TCP 

UDP 

HTTP 

Attack where multiple compromised computer systems attack a 

target, causing a DOS 

1,926,624 52.51 

Dos TCP 

UDP 

HTTP 

A malicious attack to cripple the services offered by a site, server 

or network overloading the target of its associated by flooding 

the site with many requests 

1,650,260 44.97 

Reconnaissance OS 

Fingerprinting 

Service 
Scanning 

All the different strikes simulating attacks gathering information 91,882 2.50 

Information theft Keylogging 

Data exfiltration 

Stealing of personal user information 79 0.00 

 

 

Table 2. Distribution of UNSW-NB15 dataset 
Name Description Record % 

Normal Natural transaction data 2,218,764 87.35 

Generic Attack against blockciphers with a given block and key size (not considering its structure) 215,481 8.48 
Exploits Attack that exploits vulnerabilities, taking advantage of security problems (of an operating 

system or a piece of software) known by the attackers. 

44,525 1.75 

Fuzzers Attack that suspends a program or network, feeding it with randomly generated data. 24,246 0.95 
Dos A malicious attack that makes a server or network resource unavailable, overloading the 

target of the associated infrastructure with a flood of Internet traffic. 

16,353 0.64 

Reconnaissance Comprises different attacks that gather information. 13,987 0.55 

Analysis Different attacks on penetrations (HTML files, spam, and port scan) 2,677 0.11 

Backdoor An attack that bypasses a system security mechanism to access a computer or its data. 2,329 0.09 
Shellcode Attack that exploits software vulnerabilities using small pieces of code as payloads. 1,511 0.06 

Worms Attack where the attacker replicates itself to spread to other computers. 174 0.01 
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As indicated by the distribution of UNSW-NB15, which exhibits a ratio of 87% normal traffic and 

13% attack traffic, the system functions in a balanced manner between these two traffic categories. This was 

subsequently balanced to approximate a realistic scenario, resulting in 50% of normal traffic and 50% of 

attacks. To ascertain the efficacy of the transfer learning-based model in detecting both known and unknown 

attacks, three distinct datasets were generated in the target domain and are presented in Table 3. 

a) UNSW-NB15_base4: dataset containing normal traffic and three type of known attacks (generic, DoS, 

and reconnaissance) used for training and divided into two subdataset: 

‒ UNSW-NB15_base4_train : 75% of UNSW-NB15_base4 to train model 1. 

‒ UNSW-NB15_base4_test : 25% of UNSW-NB15_base4 to evaluate the effectiveness in detection of 

known attacks. 

b) UNSW-NB15_first-test: dataset to evaluate effectiveness in detection of unknown attacks (exploits, 

fuzzers, analisis, backdoor, shellcode, and worms). 

c) UNSW-NB15_full-test: dataset to evaluate effectiveness in detection of attack type known attacks 

(generic, DoS, and reconnaissance) and unknown attacks (exploits, fuzzers, analisis, backdoor, shellcode, 

and worms). 

It is important to note that phases 1 and 2 of the frameworks involve data processing. In the transfer 

learning-based model under design, the output from the convolutional base is utilized as input for the 

classifier. Subsequently, the datasets for the source and target domains must be trained with the same input 

formats and features. For this study, new versions were generated for both datasets with their 15 common 

features, which are shown in Table 4. 

In this phase, the columns with string formats are converted to numeric formats using the one hot 

encoding (OHE) method. The columns formatted in hexadecimal (HEX) are converted to decimal (DEC) 

format. A logarithmic procedure is applied to the columns (ie., dur, sbytes, dbytes, and spkts) which have 

concentrated values at 0. Standard normalization of the dataset is performed to prevent overfitting and 

potential bias in the results. Finally, the data is transformed into an image format into a 1D format  

(i.e., a vector of length 24 yielding dimensions of [1], [24]). 
 

 

Table 3. Distribution of UNSW-NB15 subdataset 
 UNSW-NB15_base4_train UNSW-NB15_base4_test UNSW-NB15_first-test UNSW-NB15_full-test 

Name Record % Record % Record % Record % 

Normal 183,969 51.67 61,465 50.01 75,462 50.00 321,283 50.00 

Generic 160,198 44.99 53,938 43.88    215,481 33.53 

Exploits     44,525 29.50 44,525 6.93 
Fuzzers     24,246 16.07 24,246 3.77 

Dos 8,971 2.52 4,073 3.31    16,353 2.54 

Reconnaissance 2,909 0.82 3,434 2.79    13,987 2.18 
Analysis     2,677 1.77 2,677 0.42 

Backdoor     2,329 1.54 2,329 0.36 

Shellcode     1,511 1.00 1,511 0.24 
Worms     174 0.12 174 0.03 

 

 

Table 4. 15 common features in both dataset 
No Bot-IoT UNSWNB-15 Type  Description 

1 Proto Proto Nominal Textual representation of transaction protocols presents in network flow 

2 Saddr Srcip Nominal Source IP address. 

3 Sport Sport Integer Source port number. 
4 Daddr Dstip Nominal Destination IP address. 

5 Dport Dsport Integer Destination Port number. 

6 Spkts Spkts Float Source-to-destination packet count 
7 Dpkts Dpkts Float Destination-to-source packet count. 

8 Sbytes Sbytes Float Source-to-destination byte count 

9 Dbytes Dbytes Float Destination-to-source byte count. 
10 State State Nominal Transaction state. 

11 Stime Stime Timestamp Record start time. 

12 Ltime Ltime Timestamp Record end time. 
13 Dur Dur Float Record total duration. 

14 Attack Label Binary Class label: 0 for normal traffic, 1 for attack. 

15 Category attack_cat Nominal Cyberattack family. 

 

 

2.4.  Transfer learning and model design 

In phase 3, model 1 is constructed as a base model using the BoT-IoT dataset, which has been 

randomly partitioned into 75% training data and 25% testing data. In phase 4, model 1 experienced an update 
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that integrated the knowledge acquired in the source domain into the target domain, resulting in the formation 

of model 2. In model 2, the convolutional base of the original base model is fixed, and the classifier is fed 

with its outputs. Model 2 is trained using the UNSW-NB15_Base4_train dataset, which represents 75% of 

the UNSW-NB15_Base4 dataset. In the final phase of the evaluation, model 2's capabilities to detect both 

known and unknown attacks will be assessed by using the UNSW-NB15_first_test and  

UNSW-NB15_full_test datasets. This approach encompasses both known and unknown attack scenarios, 

thereby ensuring a comprehensive assessment of Model 2's capabilities. 

This study designs and develops a 1D-CNN for attack detection in IoT networks. Model 1 serves as 

the base model, and model 2 adds knowledge from it. The proposed models are outlined in Figure 3. The first 

model (hereafter referred to as "model 1") consists of an input layer, two blocks of convolution layers, a 

flatten layer, a fully connected layer, and an output layer. Each block comprises a convolutional layer, a 

normalization layer, a pooling layer, and a dropout layer. The convolution layer is a critical component of 

deep learning algorithms, responsible for extracting features from raw data. It accomplishes this by learning 

data attributes from small sub-samples of the input data, ensuring the preservation of the underlying 

associations between data points. The objective of layer normalization is to normalize all inputs to a specific 

neural network layer. The layer normalization layer is responsible for standardizing the output of the 

convolution layer for the max pooling layer. The max pooling layer is responsible for determining the total 

number of features present in each patch. It identifies the features that demonstrate the greatest dominance 

within specific localized regions. This process enables the network to prioritize the most significant elements 

while effectively reducing redundancy. A spatial dropout layer is employed to eliminate the entire feature 

map rather than individual units. The flatten layer is fully connected to a dense layer. The final layer of the 

model is designated as the output layer for binary classification. 

Model 2 represents an updated version of model 1. It comprises an input layer, a frozen layer with 

transfer learning for the base model, a flatten layer, three blocks of fully connected layers with a dropout 

layer, and an output layer. The input layer contains an equal number of features. During the training of the 

binary classification model, the convolution layers, normalization layers, pooling layers, dropout layers, and 

flatten layers were frozen. During the training phase, learning was permitted exclusively in the dense and 

output layers. As demonstrated in Figure 3, a general perspective from both models is presented. 

 

 

 
 

Figure 3. General view of model 1 and model 2 
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In model 1, the input for 1D-CNN is two-dimensional. Initially, an input vector [1], [24] is generated 

to accommodate the 15 common features in phases 1 and 2. Subsequent to the incorporation of the input 

layer, the model was augmented with four convolution layer blocks. The convolution operation in the first 

layer is configured with a 64-filter configuration, a 24-filter kernel size, a rectified linear unit (ReLU) 

activation function, and the same padding parameter. The layer normalization adjusts the preceding layer 

activation separately for each sample in a given batch. The maximum pooling layer provides a solution that 

ensures the preservation of the most salient features, thereby enhancing the efficiency of the training process 

and improving the performance of the model. A spatial dropout layer is employed to regularize the training 

data model and mitigate overfitting, with a drop value of 0.05. It is noteworthy that each of the four 

convolution layers employs identical parameters. The classification component comprises fully connected, 

flattened, and dense layers. The flatten layer is applied to the model, thereby transforming the tensor into a 

shape that is equivalent to the tensor elements. The flatten layer is connected to a fully connected dense layer, 

and the dense layer is connected to the output layer. The dense layer contains 512 neurons, and a single 

neuron is responsible for implementing the sigmoid activation function in the output layer. The model has 

been trained over the course of 15 epochs, with a batch size of 256 and an Adam optimizer with a learning 

rate of 2×10-5 This training process has been implemented to minimize the error function and the binary 

cross-entropy loss function. 

In model 2, the convolution layer from the model 1 is to be frozen in order to prevent weight 

changes during training. This layer is to be followed by three blocks of fully connected layers. The first layer 

consists of 512 neurons with a drop value of 0.4, the second layer consists of 256 neurons with a drop value 

of 0.3, and the last layer consists of 128 neurons with a drop value of 0.2. The output layer is comprised of a 

single neuron that exhibits sigmoid activation. The model has been trained over 50 epochs, with a batch size 

of 4096, an Adam optimizer with a learning rate of 6×10-5, and a binary cross-entropy loss function. The 

training parameters for both models are summarized in Table 5. 

 

2.5.  Evaluation metrics 

In phase 5, the two models are validated using accuracy, precision, recall, F1-score, and area under 

the receiver operating characteristic curve (AUC-ROC) score. Accuracy is defined as the proportion of 

samples that are correctly identified, expressed as a percentage of the total number of samples. Precision is 

quantified by the proportion of instances that are accurately classified to the total true positive (TP) and false 

positive (FP) cases. The calculation of recall is determined by the division of the total number of TP 

measurements by the total TP and false negative (FN) measurements. The F1-score is determined by the 

calculation of the weighted average of precision and recall. Furthermore, the CNN model's validation is 

supported by the false positive rate (FPR), defined as the number of normal samples that are classified as 

positive, and the false negative rate (FNR), denoting the number of abnormal samples that are identified as 

negative. The Matthews correlation coefficient (MCC) is a metric that considers true and false positives and 

negatives, thereby providing a balanced measure of classification performance. The range of possible values 

is from -1 to 1. In this context, 1 indicates perfect prediction, 0 indicates no better than random chance, and -

1 indicates total disagreement between prediction and true prediction [28]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁)
 (1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
 (3) 

 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ×
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙)
 (4) 

 

𝑀𝐶𝐶 =
𝑇𝑃× 𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+ 𝐹𝑃)×(𝑇𝑃+𝐹𝑁)×(𝑇𝑁+𝐹𝑃)×(𝑇𝑁+𝐹𝑁) 
 (5) 

 

2.6.  System setup 

The transfer learning experimental environment was constructed on an Asus X441UB laptop, which 

is supported by the following hardware specifications: an Intel® Core™ i3-6006U CPU @ 2.0 GHz 

processor and 8 GB of RAM DDR4. This laptop model is supported by an NVIDIA® GeForce® MX110 2 

GB GDDR3 graphics card with a GPU driver, cuda 12.2.2, CuDNN 8.9.7.29, and TensorRT 10.2.0. The 
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operating system utilized in this study is Ubuntu 22.04 OS, which is equipped with Python 3.11.0, 

Tensorflow 2.15.1, Scikit-Learn, and Keras packages. 

 

 

Table 5. The parameter of model 1 and model 2 
Layer Name Model 1 Model 2 

Number Description Number Description 

Input  Input layer 1 24 fitur 1 24 fitur 
Hidden layer Conv1D 2 Filter =64, Padding = same, 

Kernel_size =24, Activation = 

ReLu 

  

 Normalization 2    

 MaxPool1D 2 Pool_size =2, Padding = same   

 Spatial dropout 2 Rate =0.05   
Classification Dense  1 Neuron =512, Activation = 

Relu 

1 Neuron =512, Activation = 

Relu, Dropout =0.4 

    1 Neuron =256, Activation = 

Relu, Dropout =0.4 

    1 Neuron =128, Activation = 

Relu, Dropout =0.2 
Output Output layer 1 Neuron=1, Activation = 

Sigmoid 

1 Neuron =1, Activation = 

Sigmoid 

Hyperparameters Early stopping (monitor = val_loss, patience =5) 
Optimizers = Adam 

Loss function =BinaryCrossentrophy 
Learning rate =2e-5 

Batch size =256 

Epoch =15 

Early stopping (monitor = val_loss, 
patience =5), optimizers = Adam 

Loss function = BinaryCrossentrophy 
Learning rate =6e-5 

Batch size =4096 

Epoch =50 

 

 

3. RESULTS AND DISCUSSION 

3.1.  Evaluation model 1 as base model 

Model 1 as base model is trained using the 5% BoT-IoT has an optimal attack detection rate with 

accuracy, precision, recall, and F1-score achieve 100% and MCC of 0.9502 meaning that almost all traffic 

can be detected accurately. However, some normal traffic is identified by the model as attack traffic, and 

some attack traffic, particularly reconnaissance type traffic, is detected as normal traffic. The complete 

results of traffic detection from this model are shown in Tables 6 and 7. 

 

 

Table 6. Performance of base model 
Name Detected Not detected % Detected 

Normal 104 2 98.11 
DDos 385,282 0 100.00 

Dos 330,097 0 100.00 

Reconnaissance 16,438 9 99.95 
Information theft 16 0 100.00 

 

Table 7. Metrics of base model 
Metrics Value 

Accuracy 100.00% 
Precision 100.00% 

Recall 100.00% 

F1-Score 100.00% 
MCC 0.9502 

 

 

 

3.2.  Evaluation model 1 without transfer learning 

In this stage, model 1 is trained using the UNSW-NB15-Base4_train dataset and tested using the 

UNSW-NB15-first_test dataset. The dataset contains types of attacks that have not been trained (unknown 

attacks), allowing for the assessment of model 1's ability to detect new types of attacks. Model 1 is capable of 

detecting normal traffic well, but for unknown attack, especially fuzzers and analysis, it has a low detection 

rate of 48.17% and 41.64% respectively. Furthermore, model 1 will be tested with UNSW-NB15_full_test to 

determine the extent to which detecting known attacks and unknown attacks. The capability of model 1 for 

attack detection is quite good. However, there are still types of attacks that remain inadequately detectable, 

such as backdoor and shellcode, it has a low detection rate of 82.07% and 84.65%. The complete results of 

traffic detection from model 1 are shown in Table 8. 
 

3.3.  Evaluation model 2 (model 1 with transfer learning) 

At this stage, model 2 is constructed where model 1 is enhanced with transfer learning, allowing for 

understanding that the use of transfer learning can assist model 2 in detecting both known and unknown 

attacks more effectively compared to model 1. In first test using UNSW-NB15_first_test dataset, model 1 has 

ability to detect unknown attacks and has improved because of transfer learning compared to without it. Only 

the fuzzers and worms have a detection rate of 96%, while others have rates above 97%. The second test will 
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use the UNSW-NB15_full_test dataset, which includes both known and unknown attacks. For unknown 

attack types, analysis has the highest detection rate at 99.84%, while backdoors have the lowest detection rate 

at 89.36%. For known attack detections, reconnaissance has the highest detection rate at 99.94%, and exploits 

have the lowest detection rate at 94.53%. The complete results of the detection rate from model 2 are shown 

in Table 9. 

 

 

Table 8. Detection rate in model 1 without transfer learning 
Name UNSW-NB15-first_test UNSW-NB15_full_test 

Detected Not detected % Detected Detected Not detected % Detected 

Normal 74,518 794 98.95 316,086 4,507 98.59 

Generic    213,545 173 99.92 

Exploits 18,556 9,761 65.53 25,741 2,576 90.90 
Fuzzers 10,365 11,152 48.17 20,643 874 95.94 

Reconnaissance    11,835 19 99.84 

DoS    3,650 213 94.49 

Shellcode 1,297 214 85.84 1,279 232 84.65 

Analysis 259 363 41.64 607 15 97.59 

Backdoor 244 113 68.35 293 64 82.07 
Worms 67 67 50.00 169 5 97.13 

 

 

Table 9. Detection rate in model 2 (model 1 with transfer learning) 
Name UNSW-NB15-first_test UNSW-NB15_full_test 

Detected Not detected % Detected Detected Not detected % Detected 

Normal 72,903 2,409 96.80   316,039   4,554 98.58  

Generic     213,692   26 99.99  
Exploits 27,588 729 97.43   26,768   1,549 94.53  

Fuzzers 20,725 792 96.32   21,017   500 97.68  

Reconnaissance     11,847   7 99.94  
DoS     3,779   84 97.83  

Shellcode 1471 40 97.35   1,359   152 89.94  

Analysis 621 1 99.84   621   1 99.84  

Backdoor 350 7 98.04   319   38 89.36  

Worms 168 6 96.55   169   5 97.13  

 

 

3.4.  Validation of the model 

First, the detection rate from both tests compared and indicated a significant improvement. Overall, 

in first test, UNSW-NB15_first_test dataset used, each type of unknown attack showed improvement, 

particularly for analysis, which increased by 58.20% from 41.64% to 99.84%, and fuzzers, which increased 

by 48.15% from 48.17% to 96.32%, while the detection of normal traffic has decreased from 98.95 to 

96.80%. The detection of normal traffic is slightly lower because the training of model 1 was conducted with 

the BoT-IoT dataset, which has a very small percentage of normal traffic compared to attack traffic.  

In second test used UNSW-NB15_full_test to assess its capability in detecting both known and unknown 

attacks. Overall, each type of unknown attack has also shown an increase, with unknown attack types such as 

backdoors and exploits exhibiting a significant improvement of 7.72% and 5.29% while for known attacks, 

DoS increased by 3.34% from 94.49% to 97.83%, respectively. However, the detection rate of normal traffic 

still slightly decreased by -0.01%. 

The complete results of the comparison and improvement detection rates from both models are 

shown in Table 10. The following conclusions can be drawn from this data. It has been demonstrated that 

Model 2, when employing the transfer learning method, exhibits an enhanced detection rate for both known 

and unknown attacks. The known attack detection rate ranges from 97.83% to 99.99%, with the unknown 

attack detection rate ranging from 89.36% to 99.84%. A comparison of models 1 and 2 reveals that the latter, 

utilizing transfer learning, enhances the detection rate for unknown attacks by up to 58.20%, and for known 

attacks by up to 7.29%. Therefore, model 2 with transfer learning demonstrates a significant enhancement in 

the detection of both known and unknown attacks, despite the reduced representation in the dataset, when 

compared with the model. 

Comparison was made between the evaluation metrics from both tests. Model 1 was initially 

evaluated for its capacity to detect unknowns using the UNSW-NB15_first_test dataset. The model's overall 

accuracy was found to be 82.42%, with a precision of 58.69%, a recall of 97.49%, an F1-score of 63.64%, 

and an MCC of 0.6573. Model 1 was also evaluated for the detection of both unknown and known attacks 

using the UNSW-NB15-full_test dataset. In this particular instance, the accuracy rate was recorded at 
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98.55%, the precision rate at 98.50%, the recall rate at 98.34%, the F1-score at 87.29%, and the MCC at 

0.9709. A comparative analysis of the overall metrics for both solutions reveals that model 2 exhibits 

superior performance in all metrics when compared to model 1. The accuracy, precision, and F1-score 

metrics have been enhanced by 14.49%, 38.31%, and 22.95%, respectively, in the detection of unknown 

attacks. Furthermore, these metrics have been improved by 0.31%, 0.67%, and 0.34%, respectively, when 

considering both known and unknown attacks. 

Evaluation metrics from both tests are compared. Model 1 was evaluated first on the detection of 

unknown with the UNSW-NB15_first_test dataset. It achieves an overall accuracy of 82.42%, a precision of 

58.69%, a recall of 97.49%, an F1-score of 63.64%, and an MCC of 0.6573. Model 1 was also evaluated for 

the detection of both unknown and known attacks using the UNSW-NB15-full_test dataset. In this case, the 

accuracy is 98.55%, precision is 98.50 %, recall is 98.34%, F1-score is 87.29%, and MCC is 0.9709. If the 

overall metrics for both solutions are compared, we can conclude that model 2 outperforms model 1 for all 

metrics. Accuracy, precision and F1-score are improved by 14.49%, 38.31%, and 22.95% in the detection of 

unknown, and 0.31%, 0.67%, and 0.34% respectively when considering both known and unknown attacks. 

The primary factor contributing to this enhancement is the faster convergence of the optimization algorithm 

to optimal weights in model 2 when the weights are initialized in a similar domain. This contrasts with  

model 1, which commences from the beginning and utilizes random weights. Another metric that has shown 

notable improvement is MCC. Model 2 demonstrates higher MCC values due to two primary factors: the 

occurrence of unknown attacks and the imbalanced nature of the dataset. It can be concluded from these 

factors that model 2 makes superior predictions in terms of attack detection. This is a critical consideration in 

adapting the model to different IoT device traffic patterns. As demonstrated in Table 11, this study provides a 

comprehensive evaluation of the performance metrics from models 1 and 2. 

 

 

Table 10. Comparison and improvement detection rate in model 1 and model 2 
Name UNSW-NB15-first_test UNSW-NB15-full_test 

Model 1 (%) Model 2 (%) Improve (%) Model 1 (%) Model 2 (%) Improve (%) 

Normal 98.95 96.80 -2.15 98.59 98.58 -0.01 

Generic    99.92 99.99 0.07 

Exploits 65.53 97.43 31.90 90.90 94.53 3.63 

Fuzzers 48.17 96.32 48.15 95.94 97.68 1.74 

Reconnaissance    99.84 99.94 0.1 

DoS    94.49 97.83 3.34 
Shellcode 85.84 97.35 11.51 84.65 89.94 5.29 

Analysis 41.64 99.84 58.20 97.59 99.84 2.25 

Backdoor 68.35 98.04 29.69 82.07 89.36 7.29 
Worms 50.00 96.55 46.55 97.13 97.13 0 

 

 

Table 11. Comparison of evaluation metrics from model 1 and model 2 
Metric UNSW-NB15-first_test UNSW-NB15-full_test 

Model 1 Model 2 Improvement Model 1 Model 2 (%) Improvement 

Accuracy 82.42% 96.88% 14.49% 98.55% 98.86% 0.31% 

Precision 58.69% 97.00% 38.31% 98.50% 99.17% 0.67% 
Recall 97.49% 95.48% -2.01% 98.34% 98.40% 0.06% 

F1-Score 73.27% 96.22% 22.95% 98.44% 98.72% 0.34% 

MCC 0.6573 0.9358 0.2785 0.9709 0.9770 0.0061 

 

 

4. CONCLUSION 

In this research, we investigate the detection capabilities of transfer learning-based methods for both 

unknown and known attacks in IoT networks with scarce and unbalanced datasets. To this end, we develop an 

efficient attack detection framework that combines knowledge transfer and model refinement, achieving high 

detection accuracy for both known and unknown attacks. The BoT-IoT dataset is utilized to learn knowledge 

(source domain) and is applied to the UNSW-NB15 dataset (target domain). To evaluate the performance and 

feasibility of the proposed transfer learning-based model, we generate UNSW-NB15_first-test dataset to 

evaluate effectiveness in detection of unknown attacks and UNSW-NB15_full-test dataset to evaluate 

effectiveness in detection of known and unknown attacks. We find that transfer learning and fine-tuning 

improve the model for the detection of in detection of known and unknown attacks. The experimental results 

show that the transfer learning-based model achieves high accuracy, precision, F1-score and MCC. For future 

research, greater efforts will be made to explore and implement advanced architectures of transfer learning-

based models in addressing attack detection issues by utilizing source and target domains that have different 

class labels, in order to further enhance the performance and feasibility of IoT attack detection systems. 
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